features = dataset.iloc[:, :-1].values labels = dataset.iloc[:, -1].values
时间: 2024-03-29 21:38:09 浏览: 91
这段代码是用来从一个数据集中提取出特征和标签的。其中 `iloc` 是 pandas 库中的方法,用于基于整数位置来访问数据。`: , :-1` 表示选取所有的行,但是只选取除了最后一列之外的所有列,也就是说,选取的是数据集中的特征。`: , -1` 表示选取所有的行,但是只选取最后一列,也就是说,选取的是数据集中的标签。`.values` 表示将选取到的数据转化为 numpy 数组。因此,这段代码将数据集中的特征和标签分别存储到了 `features` 和 `labels` 两个变量中。
相关问题
# 加载数据集 train_data = pd.read_csv('mnist_dataset/mnist_train.csv') test_data = pd.read_csv('mnist_dataset/mnist_test.csv') # 提取特征和标签 train_features, train_labels = train_data.iloc[:, 1:], train_data.iloc[:, 0] test_features, test_labels = test_data.iloc[:, 1:], test_data.iloc[:, 0]# 对标签进行二进制编码 lb = LabelBinarizer() train_labels = lb.fit_transform(train_labels) test_labels = lb.fit_transform(test_labels) # 将特征值缩放到0-1之间并且reshape为(28,28,1) train_features = train_features.values.reshape(-1, 28, 28, 1) / 255. test_features = test_features.values.reshape(-1, 28, 28, 1) / 255.在以上代码基础上使用tensorflow构建深度神经网络处理mnist数据集,给出代码
好的,以下是使用 TensorFlow 构建深度神经网络处理 MNIST 数据集的代码:
```python
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, Flatten, Dense, MaxPooling2D, Dropout
# 加载数据集
train_data = pd.read_csv('mnist_dataset/mnist_train.csv')
test_data = pd.read_csv('mnist_dataset/mnist_test.csv')
train_features, train_labels = train_data.iloc[:, 1:], train_data.iloc[:, 0]
test_features, test_labels = test_data.iloc[:, 1:], test_data.iloc[:, 0]
# 对标签进行二进制编码
lb = LabelBinarizer()
train_labels = lb.fit_transform(train_labels)
test_labels = lb.fit_transform(test_labels)
# 将特征值缩放到0-1之间并且reshape为(28,28,1)
train_features = train_features.values.reshape(-1, 28, 28, 1) / 255.
test_features = test_features.values.reshape(-1, 28, 28, 1) / 255.
# 构建模型
model = tf.keras.Sequential([
Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
MaxPooling2D((2, 2)),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Flatten(),
Dense(128, activation='relu'),
Dropout(0.5),
Dense(10, activation='softmax')
])
# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(train_features, train_labels, epochs=10, batch_size=32, validation_data=(test_features, test_labels))
```
这里使用了 `Sequential()` 方法来构建模型,该方法会按照添加的顺序自动构建网络层。模型中包含两个卷积层、两个池化层、一个全连接层和一个输出层。其中使用了 `Dropout()` 方法来防止过拟合。
在编译模型时,使用了 `categorical_crossentropy` 作为损失函数,使用了 `adam` 优化器。在训练模型时,使用了 `fit()` 方法进行训练,其中的参数分别是:训练数据集、训练标签、迭代次数、批次大小以及测试数据集和测试标签用于验证模型的效果。
加载数据集 train_data = pd.read_csv('mnist_dataset/mnist_train.csv') test_data = pd.read_csv('mnist_dataset/mnist_test.csv') # 提取特征和标签 train_features, train_labels = train_data.iloc[:, 1:], train_data.iloc[:, 0] test_features, test_labels = test_data.iloc[:, 1:], test_data.iloc[:, 0]# 对标签进行二进制编码 lb = LabelBinarizer() train_labels = lb.fit_transform(train_labels) test_labels = lb.fit_transform(test_labels) # 将特征值缩放到0-1之间并且reshape为(28,28,1) train_features = train_features.values.reshape(-1, 28, 28, 1) / 255. test_features = test_features.values.reshape(-1, 28, 28, 1) / 255.在以上代码基础上使用tensorflow构建深度神经网络处理mnist数据集,给出代码,请注意是深度神经网络,不是卷积神经网络
好的,以下是使用 TensorFlow 构建深度神经网络处理 MNIST 数据集的代码:
```python
import tensorflow as tf
from tensorflow.keras.layers import Dense, Flatten
# 加载数据集
train_data = pd.read_csv('mnist_dataset/mnist_train.csv')
test_data = pd.read_csv('mnist_dataset/mnist_test.csv')
# 提取特征和标签
train_features, train_labels = train_data.iloc[:, 1:], train_data.iloc[:, 0]
test_features, test_labels = test_data.iloc[:, 1:], test_data.iloc[:, 0]
# 对标签进行二进制编码
lb = LabelBinarizer()
train_labels = lb.fit_transform(train_labels)
test_labels = lb.fit_transform(test_labels)
# 将特征值缩放到0-1之间并且reshape为(28,28,1)
train_features = train_features.values.reshape(-1, 28, 28, 1) / 255.
test_features = test_features.values.reshape(-1, 28, 28, 1) / 255.
# 构建模型
model = tf.keras.Sequential([
Flatten(input_shape=(28, 28, 1)),
Dense(256, activation='relu'),
Dense(128, activation='relu'),
Dense(10, activation='softmax')
])
# 编译模型
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
# 训练模型
model.fit(train_features, train_labels, epochs=10, validation_data=(test_features, test_labels))
# 评估模型
test_loss, test_acc = model.evaluate(test_features, test_labels, verbose=2)
print('Test accuracy:', test_acc)
```
这个模型有两个隐藏层,分别是 256 和 128 个神经元,激活函数都使用 ReLU,输出层有 10 个神经元,激活函数使用 softmax。在编译模型时使用了 Adam 优化器和交叉熵损失函数。最后训练模型并评估模型的性能。
阅读全文