def forward(self, inp): x = inp x = self.norm1(x) x = self.conv1(x) x = self.conv2(x) x = self.gelu(x) x = x * self.se(x) x = self.conv3(x) x = self.dropout1(x) y = inp + x * self.beta x = self.conv4(self.norm2(y)) x = self.gelu(x) x = self.conv5(x) x = self.dropout2(x) return y + x * self.gamma代码中文含义
时间: 2023-12-04 20:03:46 浏览: 179
这段代码是一个神经网络的前向传播函数。在这个函数中,输入(inp)首先通过一个归一化层(norm1)进行归一化,然后通过两个卷积层(conv1和conv2)进行特征提取。接着,通过一个GELU激活函数(gelu)进行非线性变换,并通过一个SE模块(se)对特征进行加权。然后再通过一个卷积层(conv3)进行进一步的特征提取,并通过一个Dropout层(dropout1)进行正则化。此外,还定义了两个参数beta和gamma,分别用于调整残差连接(y = inp + x * beta)和特征缩放(return y + x * gamma)。最后,再通过两个卷积层(conv4和conv5)和一个Dropout层(dropout2)进行最终的特征提取和正则化,并将其与残差连接相加作为输出。
相关问题
class CoordAtt(nn.Module): def __init__(self, inp, oup, reduction=32): super(CoordAtt, self).__init__() self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) self.pool_w = nn.AdaptiveAvgPool2d((1, None)) mip = max(8, inp // reduction) self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(mip) self.act = h_swish() self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0) self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0) def forward(self, x): identity = x n, c, h, w = x.size() x_h = self.pool_h(x) x_w = self.pool_w(x).permute(0, 1, 3, 2) y = torch.cat([x_h, x_w], dim=2) y = self.conv1(y) y = self.bn1(y) y = self.act(y) x_h, x_w = torch.split(y, [h, w], dim=2) x_w = x_w.permute(0, 1, 3, 2) a_h = self.conv_h(x_h).sigmoid() a_w = self.conv_w(x_w).sigmoid() out = identity * a_w * a_h return out将里面的平均池化变为平均池化和最大池化并联的形式
你可以将CoordAtt的__init__函数中的self.pool_h和self.pool_w修改为同时包含平均池化和最大池化的模块,例如:
```
self.pool_h = nn.Sequential(
nn.AdaptiveAvgPool2d((None, 1)),
nn.AdaptiveMaxPool2d((None, 1))
)
self.pool_w = nn.Sequential(
nn.AdaptiveAvgPool2d((1, None)),
nn.AdaptiveMaxPool2d((1, None))
)
```
这样修改后,CoordAtt的前向传播函数不需要做任何修改,就可以同时使用平均池化和最大池化。
class h_sigmoid(nn.Module): def __init__(self, inplace=True): super(h_sigmoid, self).__init__() self.relu = nn.ReLU6(inplace=inplace) def forward(self, x): return self.relu(x + 3) / 6 class h_swish(nn.Module): def __init__(self, inplace=True): super(h_swish, self).__init__() self.sigmoid = h_sigmoid(inplace=inplace) def forward(self, x): return x * self.sigmoid(x) class CoordAtt(nn.Module): def __init__(self, inp, oup, reduction=32): super(CoordAtt, self).__init__() # height方向上的均值池化 self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) # width方向上的均值池化 self.pool_w = nn.AdaptiveAvgPool2d((1, None)) mip = max(8, inp // reduction) self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(mip) self.act = h_swish() self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0) self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0) def forward(self, x): identity = x n, c, h, w = x.size() x_h = self.pool_h(x) x_w = self.pool_w(x).permute(0, 1, 3, 2) y = torch.cat([x_h, x_w], dim=2) y = self.conv1(y) y = self.bn1(y) y = self.act(y) x_h, x_w = torch.split(y, [h, w], dim=2) x_w = x_w.permute(0, 1, 3, 2) a_h = self.conv_h(x_h).sigmoid() a_w = self.conv_w(x_w).sigmoid() out = identity * a_w * a_h return out 嵌入CA注意力机制后出现这个问题怎么解决TypeError: init() takes from 3 to 4 positional arguments but 5 were given
根据您提供的代码,我看到在CoordAtt类的初始化函数中,没有发现任何与错误消息匹配的问题。根据错误提示,init()函数接受3到4个位置参数,但是在您的代码中没有传递额外的参数。
因此,可能的原因是您在其他地方调用了CoordAtt类的初始化函数,并传递了额外的参数。请检查一下您的代码,确保在初始化CoordAtt类时没有传递多余的参数。
另外,如果您在其他地方使用了CoordAtt类的实例,并且传递了额外的参数,那么可能需要修改相应的代码,以确保与CoordAtt类的初始化函数匹配。
如果问题仍然存在,请提供更多的代码和上下文信息,这样我可以更好地帮助您解决问题。
阅读全文