import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Embedding, Conv1D, GlobalMaxPooling1D # 构建神经网络模型 model = Sequential() model.add(Embedding(input_dim=vocab_size, output_dim=embedding_size, input_length=max_length)) model.add(Conv1D(filters=num_filters, kernel_size=filter_sizes, activation='relu')) model.add(GlobalMaxPooling1D()) model.add(Dense(num_classes, activation='softmax')) # 编译模型 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 history = model.fit(X_train, y_train, batch_size=batch_size, epochs=num_epochs, validation_data=(X_test, y_test))我如何用这个代码计算出精度和roc曲线呢

时间: 2024-02-18 19:59:41 浏览: 24
你可以使用 `model.evaluate(X_test, y_test)` 计算模型在测试集上的精度。其中 `X_test` 是测试集的特征数据,`y_test` 是测试集的标签数据。 要绘制 ROC 曲线,需要先使用 `model.predict(X_test)` 获取模型在测试集上的预测结果,然后使用 `sklearn.metrics.roc_curve` 计算出 ROC 曲线的三个参数:假正率(FPR)、真正率(TPR)和阈值(thresholds)。最后使用 `matplotlib.pyplot.plot` 绘制 ROC 曲线即可。 以下是一个简单的示例代码: ```python import matplotlib.pyplot as plt from sklearn.metrics import roc_curve, auc # 计算模型在测试集上的预测结果 y_pred = model.predict(X_test) # 计算 ROC 曲线的三个参数 fpr, tpr, thresholds = roc_curve(y_test, y_pred[:, 1]) roc_auc = auc(fpr, tpr) # 绘制 ROC 曲线 plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') plt.legend(loc="lower right") plt.show() ```

相关推荐

最新推荐

recommend-type

基于AT89C51单片机的三电梯联动控制系统+全部资料+详细文档(高分项目).zip

【资源说明】 基于AT89C51单片机的三电梯联动控制系统+全部资料+详细文档(高分项目).zip基于AT89C51单片机的三电梯联动控制系统+全部资料+详细文档(高分项目).zip基于AT89C51单片机的三电梯联动控制系统+全部资料+详细文档(高分项目).zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

梯度下降算法:介绍梯度下降算法 实例说明其运行原理

梯度下降算法,介绍梯度下降算法 实例说明其运行原理,供学习参考。
recommend-type

node-v4.8.0-linux-ppc64.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基于51单片机的空气检测+DS1302时钟显示+全部资料+详细文档(高分项目).zip

【资源说明】 基于51单片机的空气检测+DS1302时钟显示+全部资料+详细文档(高分项目).zip基于51单片机的空气检测+DS1302时钟显示+全部资料+详细文档(高分项目).zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

西北工业大学-电子实习报告.pdf

西北工业大学-电子实习报告.pdf
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。