如何用python,OpenCV实现手势识别
时间: 2024-02-20 14:02:31 浏览: 90
使用Python和OpenCV实现手势识别的基本步骤如下:
1. 采集手势图像数据集,包括手势的前景和背景样本。
2. 对采集的图像进行预处理,包括图像增强、去噪等操作,以提高手势识别的准确率。
3. 提取手势特征,例如手指数量、手指位置等。
4. 训练分类器,使用机器学习算法对特征进行分类,得到手势分类器。
5. 使用分类器对新采集的手势图像进行分类,判断手势的类型。
下面是一个简单的实现手势识别的Python示例代码:
``` python
import cv2
import numpy as np
import sklearn
from sklearn import svm
#采集手势图像数据集
def collect_dataset():
dataset = []
cap = cv2.VideoCapture(0)
while True:
ret, img = cap.read()
cv2.rectangle(img, (300,300), (100,100), (0,255,0),0)
crop_img = img[100:300, 100:300]
grey = cv2.cvtColor(crop_img, cv2.COLOR_BGR2GRAY)
value = (35, 35)
blurred = cv2.GaussianBlur(grey, value, 0)
_, thresh1 = cv2.threshold(blurred, 127, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
cv2.imshow('Thresholded', thresh1)
cv2.imshow('Gesture', img)
dataset.append(thresh1)
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
return dataset
#提取手势特征
def get_contour_precedence(contour, cols):
tolerance_factor = 10
origin = cv2.boundingRect(contour)
return ((origin[1] // tolerance_factor) * tolerance_factor) * cols + origin[0]
def get_hand_contour(img):
contours, hierarchy = cv2.findContours(img.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnt = max(contours, key=lambda x: cv2.contourArea(x))
if cv2.contourArea(cnt) > 10000:
cnt = max(contours, key=lambda x: get_contour_precedence(x, img.shape[1]))
return (cnt)
else:
return None
def get_hand_feature(img):
cnt = get_hand_contour(img)
if cnt:
hull = cv2.convexHull(cnt, returnPoints=False)
defects = cv2.convexityDefects(cnt, hull)
if defects is not None:
cnt = max(defects, key=lambda x: x[0][3])
start, end, _, _ = cnt[0]
farthest = tuple(cnt[0][2])
return (start, end, farthest, cnt, hull)
return None
#训练分类器
def train_classifier():
dataset = collect_dataset()
features = []
labels = []
for i in range(len(dataset)):
img = dataset[i]
feature = get_hand_feature(img)
if feature:
start, end, farthest, cnt, hull = feature
features.append([start, end, farthest])
labels.append(i)
clf = svm.SVC(kernel='linear', C=1)
clf.fit(features, labels)
return clf
#使用分类器对新采集的手势图像进行分类
def predict_gesture(clf, img):
feature = get_hand_feature(img)
if feature:
start, end, farthest, _, _ = feature
p = clf.predict([start, end, farthest])
return p
else:
return None
#主函数
if __name__ == '__main__':
clf = train_classifier()
cap = cv2.VideoCapture(0)
while True:
ret, img = cap.read()
cv2.rectangle(img, (300,300), (100,100), (0,255,0),0)
crop_img = img[100:300, 100:300]
grey = cv2.cvtColor(crop_img, cv2.COLOR_BGR2GRAY)
value = (35, 35)
blurred = cv2.GaussianBlur(grey, value, 0)
_, thresh1 = cv2.threshold(blurred, 127, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
cv2.imshow('Thresholded', thresh1)
p = predict_gesture(clf, thresh1)
if p is not None:
print(p)
cv2.imshow('Gesture', img)
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
```
这个示例代码中实现了手势图像数据集的采集、手势特征提取、分类器训练和手势识别等功能,可以作为实现手势识别的一个参考。
阅读全文