改成使用pytorch库
时间: 2024-09-23 19:09:51 浏览: 29
急切:PyTorch,TensorFlow,JAX和NumPy —它们全部本机使用相同的代码
如果你想在PyTorch库中实现类似的功能,你可以使用`torch.nn`模块中的`Conv1d`和`LSTM`层。以下是相应的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
class WindTemperatureModel(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, lstm_units):
super(WindTemperatureModel, self).__init__()
self.conv1d = nn.Conv1d(in_channels, filters=32, kernel_size=kernel_size, padding=(kernel_size-1)//2) # 填充保证输出尺寸不变
self.max_pool = nn.MaxPool1d(kernel_size=2)
self.flatten = nn.Flatten()
self.lstm = nn.LSTM(input_size=32, hidden_size=lstm_units, num_layers=1, batch_first=True)
self.fc = nn.Linear(lstm_units, out_channels) # 输出层
def forward(self, x):
x = self.conv1d(x)
x = F.relu(x)
x = self.max_pool(x)
x = self.flatten(x)
x, _ = self.lstm(x) # 我们只取最后一个时刻的隐藏状态作为输入给全连接层
output = self.fc(x)
return output
# 假设输入数据和模型配置已准备好
model = WindTemperatureModel(wind_speed_channel, irradiance_channel, kernel_size=3, lstm_units=64)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss() # PyTorch中使用MSELoss而不是mean_squared_error
# 训练循环
for epoch in range(num_epochs):
# 填充batch数据到固定长度
padded_data = pad_sequence(data, batch_first=True)
target = torch.stack(target_data, dim=0)
optimizer.zero_grad()
output = model(padded_data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# 预测
predictions = model(new_data)
```
在这个例子中,你需要提供`wind_speed_channel`和`irradiance_channel`的值,以及`pad_sequence()`函数来填充输入序列。注意,PyTorch的`nn.Module`类更注重动态计算图,因此在编写模型和训练过程中略有不同。
阅读全文