改成pytorch库
时间: 2024-09-23 10:09:42 浏览: 42
在PyTorch库中,我们可以使用类似的方式创建一个CNN-LSTM模型。以下是使用PyTorch的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
# 假设数据已经在 PyTorch 的 Tensor 形式下
wind_speed_tensor = ... # 风速数据
radiation_tensor = ... # 辐照度数据
temperature_tensor = ... # 温度数据
class捆打包合Model(nn.Module):
def __init__(self, input_channels):
super().__init__()
self.conv_layer = nn.Conv1d(input_channels, 32, kernel_size=3, padding=(3-1)//2) # 注意填充以保持输出尺寸不变
self.pooling = nn.MaxPool1d(2)
self.lstm_layer_1 = nn.LSTM(32, 64, bidirectional=True)
self.lstm_layer_2 = nn.LSTM(128, 32, bidirectional=True) # 上一层是双向LSTM,所以输出维度翻倍
self.fc = nn.Linear(32, 1) # 输出层
def forward(self, x):
x = self.conv_layer(x)
x = self.pooling(x)
x, _ = self.lstm_layer_1(x) # 只保留最后一个时间步的隐藏状态
x = self.lstm_layer_2(x)[0] # 又是一次取最后一个时间步
x = x.mean(dim=1) # 求平均值以获得全局特征
x = self.fc(x)
return x
# 初始化模型、损失函数和优化器
input_channels = wind_speed_data_dim + radiation_data_dim
model = 拢打包合Model(input_channels)
criterion = nn.MSELoss() # 由于是回归任务,使用MSE Loss
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练过程
for epoch in range(num_epochs):
optimizer.zero_grad()
output = model(torch.cat((wind_speed_tensor, radiation_tensor), dim=1))
loss = criterion(output, temperature_tensor)
loss.backward()
optimizer.step()
# 测试和预测
predictions = model(torch.cat((wind_speed_tensor_test, radiation_tensor_test), dim=1))
#
阅读全文