mobilenet代码pytorch实现
时间: 2023-07-07 14:09:30 浏览: 177
以下是MobileNet的PyTorch实现示例代码:
```python
import torch
import torch.nn as nn
class DepthwiseSeparableConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0):
super(DepthwiseSeparableConv2d, self).__init__()
self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding, groups=in_channels)
self.pointwise = nn.Conv2d(in_channels, out_channels, 1)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.depthwise(x)
x = self.pointwise(x)
x = self.bn(x)
x = self.relu(x)
return x
class MobileNet(nn.Module):
def __init__(self, num_classes=1000):
super(MobileNet, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 3, stride=2, padding=1)
self.bn1 = nn.BatchNorm2d(32)
self.relu1 = nn.ReLU(inplace=True)
self.features = nn.Sequential(
DepthwiseSeparableConv2d(32, 64, 3, 1, 1),
DepthwiseSeparableConv2d(64, 128, 3, 2, 1),
DepthwiseSeparableConv2d(128, 128, 3, 1, 1),
DepthwiseSeparableConv2d(128, 256, 3, 2, 1),
DepthwiseSeparableConv2d(256, 256, 3, 1, 1),
DepthwiseSeparableConv2d(256, 512, 3, 2, 1),
DepthwiseSeparableConv2d(512, 512, 3, 1, 1),
DepthwiseSeparableConv2d(512, 512, 3, 1, 1),
DepthwiseSeparableConv2d(512, 512, 3, 1, 1),
DepthwiseSeparableConv2d(512, 512, 3, 1, 1),
DepthwiseSeparableConv2d(512, 512, 3, 1, 1),
DepthwiseSeparableConv2d(512, 1024, 3, 2, 1),
DepthwiseSeparableConv2d(1024, 1024, 3, 1, 1),
)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(1024, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.features(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
以上代码中,`DepthwiseSeparableConv2d`实现了深度可分离卷积,`MobileNet`则是MobileNet的主体模型,包含了多个深度可分离卷积层。在`MobileNet`的`__init__`方法中,首先定义了一个标准的卷积层`conv1`,然后定义了多个深度可分离卷积层,最后有一个自适应平均池化层`avgpool`和一个全连接层`fc`。在`forward`方法中,先经过标准卷积层、批归一化和ReLU激活函数,然后通过多个深度可分离卷积层和自适应平均池化层,最后通过全连接层得到最终的输出。
阅读全文