怎么用nn.lstm和nn.conv2d搭建convlstm

时间: 2023-04-07 13:02:45 浏览: 77
可以使用nn.ConvLSTM2d来搭建ConvLSTM模型,它可以结合nn.LSTM和nn.Conv2d的功能。首先,需要定义ConvLSTM层的输入和输出通道数、卷积核大小、步幅和填充,然后将其传递给nn.ConvLSTM2d函数。在模型的前向传递过程中,可以使用nn.Conv2d和nn.LSTM来处理输入数据和隐藏状态。具体实现可以参考PyTorch官方文档中的例子。
相关问题

class TPCNN(nn.Module): def __init__(self, num_class=10, head_payload=False): super(TPCNN, self).__init__() # 上 self.uconv1 = nn.Sequential( # nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1, dilation=1, bias=True), nn.BatchNorm2d(16, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) self.uconv2 = nn.Sequential( # nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1, dilation=1, bias=True), nn.BatchNorm2d(32, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) # 中 self.mconv1 = nn.Sequential( # nn.Conv2d(1, 32, kernel_size=3, stride=2, padding=1, dilation=1, bias=True), nn.BatchNorm2d(32, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) # 下 self.dconv1 = nn.Sequential( # nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1, dilation=1, bias=True), nn.BatchNorm2d(32, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), nn.MaxPool2d(kernel_size=2) ) self.uconv3 = nn.Sequential( # nn.Conv2d(96, 128, kernel_size=3, stride=1, padding=1, dilation=1, bias=True), nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) self.mconv2 = nn.Sequential( # nn.Conv2d(96, 128, kernel_size=3, stride=2, padding=1, dilation=1, bias=True), nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) self.dconv2 = nn.Sequential( # nn.Conv2d(96, 128, kernel_size=3, stride=1, padding=1, dilation=1, bias=True), nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) self.uconv4 = nn.Sequential( # nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, dilation=1, bias=True), nn.BatchNorm2d(512, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) self.globalconv1 = nn.Sequential( nn.Conv2d(896, 1024, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(1024, eps=1e-05, momentum=0.9, affine=True), nn.ReLU() ) self.dmaxpool = nn.MaxPool2d(kernel_size=2,padding=1) # self.lstm1 = nn.LSTM(256,512, 2) # self.lstm2 = nn.LSTM(self.i_size*2,self.i_size*2, 2) self.avpool = nn.AdaptiveAvgPool2d(2) # self.globallstm = nn.LSTM(512, 256, 1) self.fc1 = nn.Linear(1024*2*2, 512) self.fc2 = nn.Linear(512, num_class)

这段代码定义了一个名为TPCNN的类,继承自nn.Module。它具有一个num_class参数,默认值为10,以及一个head_payload参数,其默认值为False。在__init__函数中,它首先调用父类的构造函数,然后定义了该类的其余属性和方法。

torch.nn没有ConvLSTM2d怎么回事

确实,PyTorch的torch.nn模块中没有提供ConvLSTM2d。不过,你可以使用第三方库如`kornia`或`torchkbnufft`等提供的实现来使用ConvLSTM2d。 也可以自己实现ConvLSTM2d。实现方式类似于标准的LSTM,但是将线性变换替换为卷积操作。以下是一个简单的示例代码: ```python import torch import torch.nn as nn class ConvLSTM2dCell(nn.Module): def __init__(self, in_channels, hidden_channels, kernel_size): super(ConvLSTM2dCell, self).__init__() padding = kernel_size // 2 self.conv_xh = nn.Conv2d(in_channels, hidden_channels, kernel_size, padding=padding) self.conv_hh = nn.Conv2d(hidden_channels, hidden_channels, kernel_size, padding=padding) def forward(self, x, h, c): input = torch.cat([x, h], dim=1) gates = self.conv_xh(input) + self.conv_hh(h) i_gate, f_gate, o_gate, g_gate = torch.split(gates, gates.size(1) // 4, dim=1) i_gate = torch.sigmoid(i_gate) f_gate = torch.sigmoid(f_gate) o_gate = torch.sigmoid(o_gate) g_gate = torch.tanh(g_gate) c_new = f_gate * c + i_gate * g_gate h_new = o_gate * torch.tanh(c_new) return h_new, c_new class ConvLSTM2d(nn.Module): def __init__(self, in_channels, hidden_channels, kernel_size, num_layers): super(ConvLSTM2d, self).__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.num_layers = num_layers cell_list = [] for i in range(num_layers): if i == 0: input_channels = in_channels else: input_channels = hidden_channels cell_list.append(ConvLSTM2dCell(input_channels, hidden_channels, kernel_size)) self.cell_list = nn.ModuleList(cell_list) def forward(self, x): batch_size, seq_len, channels, height, width = x.size() h_list = [torch.zeros(batch_size, self.hidden_channels, height, width).to(x.device)] c_list = [torch.zeros(batch_size, self.hidden_channels, height, width).to(x.device)] for layer_idx in range(self.num_layers): for seq_idx in range(seq_len): x_input = x[:, seq_idx, :, :, :] h, c = h_list[-1], c_list[-1] h_new, c_new = self.cell_list[layer_idx](x_input, h, c) h_list.append(h_new) c_list.append(c_new) return torch.stack(h_list[1:], dim=1) ``` 这是一个ConvLSTM2d的简单实现,包含了单个ConvLSTM2d单元和多层ConvLSTM2d的实现。你可以根据自己的需要进行调整和修改。

相关推荐

import torch import torch.nn as nn class LeNetConvLSTM(nn.Module): def __init__(self, input_size, hidden_size, kernel_size): super(LeNetConvLSTM, self).__init__() # LeNet网络部分 self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5) self.pool1 = nn.MaxPool2d(kernel_size=2) self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5) self.pool2 = nn.MaxPool2d(kernel_size=2) self.fc1 = nn.Linear(in_features=16*5*5, out_features=120) self.fc2 = nn.Linear(in_features=120, out_features=84) # ConvLSTM部分 self.lstm = nn.LSTMCell(input_size, hidden_size) self.hidden_size = hidden_size self.kernel_size = kernel_size self.padding = kernel_size // 2 def forward(self, x): # LeNet网络部分 x = self.pool1(torch.relu(self.conv1(x))) x = self.pool2(torch.relu(self.conv2(x))) x = x.view(-1, 16*5*5) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) # 将输出转换为ConvLSTM所需的格式 batch_size, channels, height, width = x.shape x = x.view(batch_size, channels, height*width) x = x.permute(0, 2, 1) # ConvLSTM部分 hx = torch.zeros(batch_size, self.hidden_size).to(x.device) cx = torch.zeros(batch_size, self.hidden_size).to(x.device) for i in range(height*width): hx, cx = self.lstm(x[:, i, :], (hx, cx)) hx = hx.view(batch_size, self.hidden_size, 1, 1) cx = cx.view(batch_size, self.hidden_size, 1, 1) if i == 0: output = hx else: output = torch.cat((output, hx), dim=1) # 将输出转换为正常的格式 output = output.permute(0, 2, 3, 1) output = output.view(batch_size, height, width, self.hidden_size) return output

最新推荐

recommend-type

微信小程序-番茄时钟源码

微信小程序番茄时钟的源码,支持进一步的修改。番茄钟,指的是把工作任务分解成半小时左右,集中精力工作25分钟后休息5分钟,如此视作种一个“番茄”,而“番茄工作法”的流程能使下一个30分钟更有动力。
recommend-type

激光雷达专题研究:迈向高阶智能化关键,前瞻布局把握行业脉搏.pdf

电子元件 电子行业 行业分析 数据分析 数据报告 行业报告
recommend-type

安享智慧理财测试项目Mock服务代码

安享智慧理财测试项目Mock服务代码
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这