torch.nn没有ConvLSTM2d怎么回事
时间: 2023-07-11 14:06:57 浏览: 268
确实,PyTorch的torch.nn模块中没有提供ConvLSTM2d。不过,你可以使用第三方库如`kornia`或`torchkbnufft`等提供的实现来使用ConvLSTM2d。
也可以自己实现ConvLSTM2d。实现方式类似于标准的LSTM,但是将线性变换替换为卷积操作。以下是一个简单的示例代码:
```python
import torch
import torch.nn as nn
class ConvLSTM2dCell(nn.Module):
def __init__(self, in_channels, hidden_channels, kernel_size):
super(ConvLSTM2dCell, self).__init__()
padding = kernel_size // 2
self.conv_xh = nn.Conv2d(in_channels, hidden_channels, kernel_size, padding=padding)
self.conv_hh = nn.Conv2d(hidden_channels, hidden_channels, kernel_size, padding=padding)
def forward(self, x, h, c):
input = torch.cat([x, h], dim=1)
gates = self.conv_xh(input) + self.conv_hh(h)
i_gate, f_gate, o_gate, g_gate = torch.split(gates, gates.size(1) // 4, dim=1)
i_gate = torch.sigmoid(i_gate)
f_gate = torch.sigmoid(f_gate)
o_gate = torch.sigmoid(o_gate)
g_gate = torch.tanh(g_gate)
c_new = f_gate * c + i_gate * g_gate
h_new = o_gate * torch.tanh(c_new)
return h_new, c_new
class ConvLSTM2d(nn.Module):
def __init__(self, in_channels, hidden_channels, kernel_size, num_layers):
super(ConvLSTM2d, self).__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.num_layers = num_layers
cell_list = []
for i in range(num_layers):
if i == 0:
input_channels = in_channels
else:
input_channels = hidden_channels
cell_list.append(ConvLSTM2dCell(input_channels, hidden_channels, kernel_size))
self.cell_list = nn.ModuleList(cell_list)
def forward(self, x):
batch_size, seq_len, channels, height, width = x.size()
h_list = [torch.zeros(batch_size, self.hidden_channels, height, width).to(x.device)]
c_list = [torch.zeros(batch_size, self.hidden_channels, height, width).to(x.device)]
for layer_idx in range(self.num_layers):
for seq_idx in range(seq_len):
x_input = x[:, seq_idx, :, :, :]
h, c = h_list[-1], c_list[-1]
h_new, c_new = self.cell_list[layer_idx](x_input, h, c)
h_list.append(h_new)
c_list.append(c_new)
return torch.stack(h_list[1:], dim=1)
```
这是一个ConvLSTM2d的简单实现,包含了单个ConvLSTM2d单元和多层ConvLSTM2d的实现。你可以根据自己的需要进行调整和修改。
阅读全文