用python 写个 convLSTM 卷积块
时间: 2024-01-26 17:08:52 浏览: 71
感谢您的提问,以下是回答:
ConvLSTM是一种结合了卷积和LSTM的神经网络模型,在处理极化序列、视频、时间序列等数据时有广泛应用。下面是使用Python编写一个ConvLSTM块的示例代码:
import torch
import torch.nn as nn
class ConvLSTMBlock(nn.Module):
def __init__(self, in_channels, hidden_channels):
super(ConvLSTMBlock, self).__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
# 定义四个卷积层以及四个标准化层
self.conv = nn.Conv2d(in_channels + hidden_channels, 4 * hidden_channels, 3, 1, 1)
self.bn = nn.BatchNorm2d(4 * hidden_channels)
def forward(self, x, h, c):
combined = torch.cat((x, h), dim=1)
gates = self.bn(self.conv(combined))
# 分离为四个门的通道
ingate, forgetgate, cellgate, outgate = gates.chunk(4, dim=1)
# 计算新的细胞状态和隐状态
new_c = (c * torch.sigmoid(forgetgate) + torch.sigmoid(ingate) * torch.tanh(cellgate))
new_h = torch.tanh(new_c) * torch.sigmoid(outgate)
return new_h, new_c
其中,in_channels表示输入数据的通道数,hidden_channels表示隐藏状态的通道数。ConvLSTMBlock的forward函数输入为输入数据x、上一时刻的隐藏状态h和细胞状态c,输出为新的隐藏状态和细胞状态。
阅读全文