求a(x)在h到h+1区间内的定积分matlab代码
时间: 2023-05-11 18:07:36 浏览: 128
function y = integral_a_x(h, h1)
syms x
a(x) = % 这里填写 a(x) 的函数表达式
y = double(int(a(x), h, h1));
end
相关问题
求a在h到h+1区间内的定积分matlab代码
以下是求解a在h到h1区间内的定积分的Matlab代码:
syms x a;
f = x^2 + a;
h = 1;
h1 = 2;
int_f = int(f, x, h, h1);
int_f_a = subs(int_f, a, 2);
disp(int_f_a);
请注意,这是一个示例代码,您需要根据您的具体问题进行修改。
复合梯形求定积分matlab代码
以下是复合梯形求定积分的MATLAB代码:
```
function I = comp_trap(f, a, b, n)
% 复合梯形求定积分
% f: 被积函数
% a, b: 积分区间
% n: 划分数
h = (b - a) / n;
x = a:h:b;
y = f(x);
I = h * (sum(y) - (y(1) + y(n+1)) / 2);
```
使用方法:
1. 将上述代码保存为`comp_trap.m`文件;
2. 在MATLAB命令窗口中输入`syms x; f = @(x) sin(x);`,定义被积函数;
3. 输入`a = 0; b = pi/2; n = 10;`,定义积分区间和划分数;
4. 输入`I = comp_trap(f, a, b, n);`,得到定积分的近似值。
其中,`f`可以替换为需要求定积分的函数,`a`和`b`为积分区间的上下限,`n`为划分数。函数返回定积分的近似值`I`。
阅读全文
相关推荐
















