Powell方法的代码实现
时间: 2024-10-07 10:08:02 浏览: 32
Powell源代码
Powell's method,也称为拟牛顿法,是一种迭代优化算法,用于寻找函数的局部最小值,尤其是在目标函数不可微的情况下。它结合了梯度信息和二分搜索策略。这里提供一个基本的Python版本的Powell方法实现示例:
```python
import numpy as np
def armijo_condition(f, x_k, g_k, alpha):
return f(x_k + alpha * g_k) <= f(x_k) + c * alpha * g_k.dot(g_k)
def line_search(f, x_k, d_k, tolerance=1e-4):
alpha = 0.5
while not armijo_condition(f, x_k, d_k, alpha):
alpha *= 0.5
if abs(alpha * d_k.dot(g_k)) < tolerance:
return alpha
else:
return min(1, alpha)
def powell_method(target_function, initial_guess, max_iter=100, tolerance=1e-6):
x = initial_guess
for _ in range(max_iter):
gradient = approximate_gradient(target_function, x)
Hessian_approximation = approximate_hessian(target_function, x)
# 使用Broyden-Fletcher-Goldfarb-Shanno(BFGS)公式更新方向向量d_k
beta = 1 / (d_k.T @ Hessian_approximation @ d_k)
direction = -Hessian_approximation @ d_k + beta * (gradient - previous_direction)
alpha = line_search(target_function, x, direction)
x += alpha * direction
if np.linalg.norm(approximate_gradient(target_function, x)) < tolerance:
break
previous_direction = direction
return x
# 这里假设target_function接受一个位置参数并返回目标函数值,以及approximate_gradient和approximate_hessian是你自定义的函数,分别计算目标函数的一阶和二阶近似梯度
```
阅读全文