cgan的网络结构中判别器 生成器的网络结构和参数量怎么查看
时间: 2024-05-14 18:18:11 浏览: 100
要查看CGAN的网络结构和参数量,需要先定义CGAN的生成器和判别器模型。一般来说,CGAN的网络结构包括两个部分:生成器和判别器。生成器和判别器都是一个神经网络模型,需要定义对应的网络层和参数。
在使用TensorFlow或PyTorch等深度学习框架时,可以使用summary或print等方法来查看模型的网络结构和参数量。例如,在TensorFlow中,可以使用以下代码来打印生成器和判别器的网络结构和参数量:
```python
# 导入 TensorFlow 和 keras
import tensorflow as tf
from tensorflow import keras
# 定义生成器和判别器
def make_generator_model():
model = keras.Sequential()
model.add(keras.layers.Dense(7*7*256, use_bias=False, input_shape=(100,)))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.LeakyReLU())
model.add(keras.layers.Reshape((7, 7, 256)))
assert model.output_shape == (None, 7, 7, 256) # Note: None is the batch size
model.add(keras.layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
assert model.output_shape == (None, 7, 7, 128)
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.LeakyReLU())
model.add(keras.layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 14, 14, 64)
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.LeakyReLU())
model.add(keras.layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 28, 28, 1)
return model
def make_discriminator_model():
model = keras.Sequential()
model.add(keras.layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',
input_shape=[28, 28, 1]))
model.add(keras.layers.LeakyReLU())
model.add(keras.layers.Dropout(0.3))
model.add(keras.layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
model.add(keras.layers.LeakyReLU())
model.add(keras.layers.Dropout(0.3))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(1))
return model
# 打印生成器和判别器的网络结构和参数量
generator = make_generator_model()
discriminator = make_discriminator_model()
generator.summary()
discriminator.summary()
```
这段代码使用Keras框架实现了一个简单的CGAN模型。通过调用summary方法,可以打印出生成器和判别器的网络结构和参数量。其中,生成器和判别器的网络结构分别如下所示:
```
Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_1 (Dense) (None, 12544) 1254400
_________________________________________________________________
batch_normalization_1 (Batch (None, 12544) 50176
_________________________________________________________________
leaky_re_lu_2 (LeakyReLU) (None, 12544) 0
_________________________________________________________________
reshape_1 (Reshape) (None, 7, 7, 256) 0
_________________________________________________________________
conv2d_transpose_3 (Conv2DTr (None, 7, 7, 128) 819200
_________________________________________________________________
batch_normalization_2 (Batch (None, 7, 7, 128) 512
_________________________________________________________________
leaky_re_lu_3 (LeakyReLU) (None, 7, 7, 128) 0
_________________________________________________________________
conv2d_transpose_4 (Conv2DTr (None, 14, 14, 64) 204800
_________________________________________________________________
batch_normalization_3 (Batch (None, 14, 14, 64) 256
_________________________________________________________________
leaky_re_lu_4 (LeakyReLU) (None, 14, 14, 64) 0
_________________________________________________________________
conv2d_transpose_5 (Conv2DTr (None, 28, 28, 1) 1600
=================================================================
Total params: 2,329,944
Trainable params: 2,304,056
Non-trainable params: 25,888
_________________________________________________________________
Model: "sequential_2"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 14, 14, 64) 1664
_________________________________________________________________
leaky_re_lu_5 (LeakyReLU) (None, 14, 14, 64) 0
_________________________________________________________________
dropout_1 (Dropout) (None, 14, 14, 64) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 7, 7, 128) 204928
_________________________________________________________________
leaky_re_lu_6 (LeakyReLU) (None, 7, 7, 128) 0
_________________________________________________________________
dropout_2 (Dropout) (None, 7, 7, 128) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 6272) 0
_________________________________________________________________
dense_2 (Dense) (None, 1) 6273
=================================================================
Total params: 212,865
Trainable params: 212,865
Non-trainable params: 0
_________________________________________________________________
```
可以看到,生成器和判别器的网络结构非常清晰,参数量也很容易计算。例如,生成器的参数量为2,329,944,判别器的参数量为212,865。
阅读全文