用python翻译List<Result_Line> vLines = ResultLineList.Where(line => line.VLineOrder != null).ToList();

时间: 2024-03-17 20:41:11 浏览: 20
这段代码的意思是:在ResultLineList中筛选出VLineOrder不为null的Result_Line对象,并将其转换为List类型,存储在vLines变量中。 对应的Python代码如下: ``` vLines = [line for line in ResultLineList if line.VLineOrder is not None] ``` 其中,通过列表推导式实现了对ResultLineList的筛选和转换操作,判断VLineOrder是否为None的语法为`is not None`。
相关问题

把c#代码转为python c#代码private void CalculatePartial_AvgVelocity_Width() { int index = -1; List<Result_Line> vLines = ResultLineList.Where(line => line.VLineOrder != null).ToList(); for (int i = 0; i < vLines.Count; i++) { index = ResultLineList.IndexOf(vLines[i]); if (vLines[i].VLineOrder == -9999) { continue; } else if (vLines[i - 1].VLineOrder == -9999) { //float leftAlpha = GetInshoreCoefficient(-9999, vLines[i].WaterLvl); float leftAlpha = NumValid.PrecisionConvert_Coefficient(GetInshoreCoefficient(-9999, vLines[i - 1].InitPointDistance)); vLines[i].PartialAvgVelocity = NumValid.PrecisionConvert_Velocity((float)(leftAlpha * vLines[i].AvgVelocity)); } else if (vLines[i].VLineOrder == 9999) { //float rightAlpha = GetInshoreCoefficient(9999, vLines[i].WaterLvl); float rightAlpha = NumValid.PrecisionConvert_Coefficient(GetInshoreCoefficient(9999, vLines[i].InitPointDistance)); vLines[i].PartialAvgVelocity = NumValid.PrecisionConvert_Velocity((float)(rightAlpha * vLines[i - 1].AvgVelocity)); } else { var temp = (vLines[i - 1].AvgVelocity + vLines[i].AvgVelocity) / 2f; vLines[i].PartialAvgVelocity = NumValid.PrecisionConvert_Velocity((float)temp); } ResultLineList[index] = vLines[i]; ResultLineList[index].WidthBetweenVLine = NumValid.PrecisionConvert_Width(vLines[i].InitPointDistance - vLines[i - 1].InitPointDistance); } }

将C#代码转换为Python代码如下: def CalculatePartial_AvgVelocity_Width(): index = -1 vLines = list(filter(lambda line: line.VLineOrder != None, ResultLineList)) for i in range(len(vLines)): index = ResultLineList.index(vLines[i]) if vLines[i].VLineOrder == -9999: continue elif vLines[i - 1].VLineOrder == -9999: leftAlpha = NumValid.PrecisionConvert_Coefficient(GetInshoreCoefficient(-9999, vLines[i - 1].InitPointDistance)) vLines[i].PartialAvgVelocity = NumValid.PrecisionConvert_Velocity(float(leftAlpha * vLines[i].AvgVelocity)) elif vLines[i].VLineOrder == 9999: rightAlpha = NumValid.PrecisionConvert_Coefficient(GetInshoreCoefficient(9999, vLines[i].InitPointDistance)) vLines[i].PartialAvgVelocity = NumValid.PrecisionConvert_Velocity(float(rightAlpha * vLines[i - 1].AvgVelocity)) else: temp = (vLines[i - 1].AvgVelocity + vLines[i].AvgVelocity) / 2.0 vLines[i].PartialAvgVelocity = NumValid.PrecisionConvert_Velocity(float(temp)) ResultLineList[index] = vLines[i] ResultLineList[index].WidthBetweenVLine = NumValid.PrecisionConvert_Width(vLines[i].InitPointDistance - vLines[i - 1].InitPointDistance)

if continue_flag == 1: q_online = torch.load('Result_discount=0.9_lr=0.0005_net') q_target = torch.load('Result_discount=0.9_lr=0.0005_net') buffer_save = np.load('Result_discount=0.9_lr=0.0005_buffer.npy', allow_pickle=True) memory.buffer = collections.deque(buffer_save.tolist(), maxlen=buffer_limit) reward_ave_list = np.load('Result_discount=0.9_lr=0.0005_reward.npy').tolist() loss_ave_list = np.load('Result_discount=0.9_lr=0.0005_loss.npy').tolist()

这段代码中,首先检查 `continue_flag` 是否等于 1。如果是,则加载模型和数据,以便继续训练或使用之前保存的结果。 - `q_online = torch.load('Result_discount=0.9_lr=0.0005_net')` 会加载之前训练好的神经网络模型并将其赋值给 `q_online` 变量。 - `q_target = torch.load('Result_discount=0.9_lr=0.0005_net')` 同样是加载神经网络模型,并赋值给 `q_target` 变量。在一些深度强化学习算法中,存在两个网络,一个用于估计当前状态的值(`q_online`),另一个用于估计目标状态的值(`q_target`)。 - `buffer_save = np.load('Result_discount=0.9_lr=0.0005_buffer.npy', allow_pickle=True)` 加载之前保存的经验缓存数据,并将其转换为Python的`deque`对象,并赋值给 `memory.buffer`。这样做是为了继续使用之前的经验数据。 - `reward_ave_list = np.load('Result_discount=0.9_lr=0.0005_reward.npy').tolist()` 加载之前保存的平均奖励列表,并将其转换为Python的列表形式。 - `loss_ave_list = np.load('Result_discount=0.9_lr=0.0005_loss.npy').tolist()` 加载之前保存的平均损失列表,并将其转换为Python的列表形式。 通过这些加载操作,您可以在之前训练的基础上进行继续训练或使用之前保存的结果进行其他操作。请确保在加载模型和数据之前,已经将相关文件保存在正确的路径下,并且文件格式与加载函数相匹配。

相关推荐

from flask import Flask, render_template, request import pandas as pd from openpyxl import load_workbook app = Flask(__name__) @app.route('/') def index(): return render_template('index2.html') @app.route('/submit', methods=['POST']) def submit(): # 获取表单数据 line = request.form['line'] date = request.form['date'] model = request.form['model'] lists = request.form['lists'] number = request.form['number'] prod_date = request.form['prod_date'] shift = request.form['shift'] prod_line = request.form['prod_line'] responsible = request.form['responsible'] # 表单验证:检查是否所有表单字段都已填写 if not all([line, date, model, lists, number, prod_date, shift, prod_line, responsible]): return "<script>alert('请填写完整表单信息!');history.back();</script>" else: # 在这里添加提交表单信息的代码 return "<script>alert('提交成功!');window.location.href='/';</script>" # 将数据存储到 Excel 文件中 file_path = 'D:/data.xlsx' wb = load_workbook(file_path) ws = wb.active ws.append([line, date, model, lists, number, prod_date, shift, prod_line, responsible]) wb.save(file_path) return render_template('index2.html') @app.route('/history') def history(): # 从 Excel 文件中读取历史记录 file_path = 'D:/data.xlsx' df = pd.read_excel(file_path,keep_default_na=False) # 获取查询参数 query_date = request.args.get('date') query_line = request.args.get('line') query_model = request.args.get('model') # 进行查询 if query_date: df = df[df['确认日期'] == query_date] if query_line: df = df[df['确认线别'] == query_line] if query_model: df = df[df['异常机种'] == query_model] # 生成汇总图表 chart_data = df.groupby('异常现象').size().reset_index(name='count') chart_labels = chart_data['异常现象'].tolist() chart_values = chart_data['count'].tolist() return render_template('history.html', data=df.to_dict('records'), chart_labels=chart_labels, chart_values=chart_values) @app.route('/chart') def chart(): return render_template('chart.html') if __name__ == '__main__': app.run(debug=True)

Traceback (most recent call last): File "C:/Users/DELL/Desktop/python_flask-dc/python_flask/bpnn_tf.py", line 106, in <module> last_three = column.str[-3:] File "E:\python-3.7.0\lib\site-packages\pandas\core\generic.py", line 5137, in __getattr__ return object.__getattribute__(self, name) File "E:\python-3.7.0\lib\site-packages\pandas\core\accessor.py", line 187, in __get__ accessor_obj = self._accessor(obj) File "E:\python-3.7.0\lib\site-packages\pandas\core\strings.py", line 2100, in __init__ self._inferred_dtype = self._validate(data) File "E:\python-3.7.0\lib\site-packages\pandas\core\strings.py", line 2157, in _validate raise AttributeError("Can only use .str accessor with string values!") AttributeError: Can only use .str accessor with string values!Traceback (most recent call last): File "C:/Users/DELL/Desktop/python_flask-dc/python_flask/bpnn_tf.py", line 106, in <module> last_three = column.str[-3:] File "E:\python-3.7.0\lib\site-packages\pandas\core\generic.py", line 5137, in __getattr__ return object.__getattribute__(self, name) File "E:\python-3.7.0\lib\site-packages\pandas\core\accessor.py", line 187, in __get__ accessor_obj = self._accessor(obj) File "E:\python-3.7.0\lib\site-packages\pandas\core\strings.py", line 2100, in __init__ self._inferred_dtype = self._validate(data) File "E:\python-3.7.0\lib\site-packages\pandas\core\strings.py", line 2157, in _validate raise AttributeError("Can only use .str accessor with string values!") AttributeError: Can only use .str accessor with string values!

帮我看看这段代码报错原因: Traceback (most recent call last): File "/home/bder73002/hpy/ConvNextV2_Demo/train+.py", line 274, in <module> train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema) File "/home/bder73002/hpy/ConvNextV2_Demo/train+.py", line 48, in train loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss File "/home/bder73002/anaconda3/envs/python3.9.2/lib/python3.9/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/bder73002/hpy/ConvNextV2_Demo/models/losses.py", line 38, in forward index.scatter_(1, target.data.view(-1, 1).type(torch.LongTensor), 1) RuntimeError: Expected index [128, 1] to be smaller than self [16, 8] apart from dimension 1 部分代码如下:cls_num_list = np.zeros(classes) for , label in train_loader.dataset: cls_num_list[label] += 1 criterion_train = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, s=30) class LDAMLoss(nn.Module): def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).__init__() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s self.weight = weight def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) # index.scatter_(1, target.data.view(-1, 1), 1) index.scatter_(1, target.data.view(-1, 1).type(torch.LongTensor), 1) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) batch_m = batch_m.view((-1, 1)) x_m = x - batch_m output = torch.where(index, x_m, x) return F.cross_entropy(self.s*output, target, weight=self.weight)

最新推荐

recommend-type

Python中if __name__ == '__main__'作用解析

主要介绍了Python中if __name__ == '__main__'作用解析,这断代码在Python中非常常见,它有作用?本文就解析了它的作用,需要的朋友可以参考下
recommend-type

python中时间转换datetime和pd.to_datetime详析

主要给大家介绍了关于python中时间转换datetime和pd.to_datetime的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
recommend-type

Python Numpy:找到list中的np.nan值方法

在Python的科学计算领域,Numpy库是不可或缺的一部分,它提供了大量高效的数据处理功能。在处理数据时,尤其是在进行数值计算时,经常会遇到缺失值的情况,这些缺失值通常表示为`np.nan`(Not a Number)。本篇文章...
recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

在Python中,可以使用`numpy.random.shuffle`函数对训练数据和对应的标签进行随机排列,然后再进行模型训练。以下是一个简单的示例: ```python import numpy as np # 假设x_train和y_train是训练数据和对应的标签...
recommend-type

C++实现的俄罗斯方块游戏

一个简单的俄罗斯方块游戏的C++实现,涉及基本的游戏逻辑和控制。这个示例包括了初始化、显示、移动、旋转和消除方块等基本功能。 主要文件 main.cpp:包含主函数和游戏循环。 tetris.h:包含游戏逻辑的头文件。 tetris.cpp:包含游戏逻辑的实现文件。 运行说明 确保安装SFML库,以便进行窗口绘制和用户输入处理。
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。