psa模块融合深度可分离卷积的pytorch代码
时间: 2023-10-16 20:22:57 浏览: 291
以下是一个示例代码,用于实现使用深度可分离卷积的PSA模块。该代码使用PyTorch框架。
```python
import torch
import torch.nn as nn
class PSAConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
super(PSAConv, self).__init__()
# 第一层卷积
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)
# 第二层卷积
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=out_channels, bias=False)
# BN层
self.bn = nn.BatchNorm2d(out_channels)
# ReLU激活函数
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
# 第一层卷积
out = self.conv1(x)
# 第二层卷积
out = self.conv2(out)
# BN层
out = self.bn(out)
# ReLU激活函数
out = self.relu(out)
return out
class PSAModule(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
super(PSAModule, self).__init__()
# PSA第一层
self.psa1 = PSAConv(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
# PSA第二层
self.psa2 = PSAConv(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
# PSA第三层
self.psa3 = PSAConv(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
# PSA第四层
self.psa4 = PSAConv(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
def forward(self, x):
# PSA第一层
out1 = self.psa1(x)
# PSA第二层
out2 = self.psa2(out1)
# PSA第三层
out3 = self.psa3(out2)
# PSA第四层
out4 = self.psa4(out3)
# 将四个特征图合并
out = torch.cat((out1, out2, out3, out4), dim=1)
return out
```
在上面的代码中,`PSAConv`是一个深度可分离卷积模块,可以在`PSAModule`中重复使用。`PSAModule`是一个完整的PSA模块,其中包含了四个`PSAConv`模块,并将它们的特征图合并在一起。
在使用该模块时,我们可以将它放在我们的模型中。例如:
```python
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
# 首先定义一些卷积层和池化层
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.relu = nn.ReLU(inplace=True)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# PSA模块
self.psa = PSAModule(16, 16, kernel_size=3, stride=1, padding=1)
# 最后一些卷积层和池化层
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(256)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(256, 10)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.pool(out)
out = self.psa(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.pool(out)
out = self.conv3(out)
out = self.bn3(out)
out = self.relu(out)
out = self.avgpool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
```
在上面的模型中,我们将`PSAModule`放在了模型的第二层。这里的模型只是一个示例,您可以根据自己的需要对其进行更改。
阅读全文