class ConvertToMultiChannelBasedOnBratsClassesd(MapTransform): def __call__(self, data): d = dict(data) for key in self.keys: result = [] result.append(torch.logical_or(d[key] == 2, d[key] == 3)) result.append(torch.logical_or(torch.logical_or(d[key] == 2, d[key] == 3), d[key] == 1)) result.append(d[key] == 2) d[key] = torch.stack(result, axis=0).float() return d

时间: 2024-04-20 14:22:12 浏览: 14
这是一个名为`ConvertToMultiChannelBasedOnBratsClassesd`的类,继承自`MapTransform`。它的作用是将输入数据转换为基于Brats类别的多通道表示。 在`__call__`方法中,首先将输入数据转换为字典类型。然后,对于字典中的每个键(key),进行以下操作: 1. 创建一个空列表`result`。 2. 将满足条件`d[key] == 2`或`d[key] == 3`的元素设置为逻辑True,并将其添加到`result`列表中。 3. 将满足条件`d[key] == 2`、`d[key] == 3`或`d[key] == 1`的元素设置为逻辑True,并将其添加到`result`列表中。 4. 将满足条件`d[key] == 2`的元素设置为逻辑True,并将其添加到`result`列表中。 5. 使用torch的`stack`函数将`result`列表中的元素沿着新的维度(axis=0)进行堆叠,并将结果转换为浮点型。 6. 将转换后的结果赋值给字典中的键(key)。 7. 返回转换后的字典。 请注意,这段代码中使用了torch库,因此需要确保已正确导入该库。
相关问题

解释代码: def __contains__(self, key): return key in self.wave_dict

这是一个 Python 类中的一个方法,这个方法用于检查一个键是否在一个字典中。 其中,self 是指类实例本身,wave_dict 是类中的一个属性,表示一个字典。 在这个方法中,使用了 in 关键字来判断 key 是否在 self.wave_dict 中,如果在,则返回 True,否则返回 False。这个方法可以让我们通过 in 关键字来判断一个键是否在类中的字典中。

class Dn_datasets(Dataset): def __init__(self, data_root, data_dict, transform, load_all=False, to_gray=False, s_factor=1, repeat_crop=1): self.data_root = data_root self.transform = transform self.load_all = load_all self.to_gray = to_gray self.repeat_crop = repeat_crop if self.load_all is False: self.data_dict = data_dict else: self.data_dict = [] for sample_info in data_dict: sample_data = Image.open('/'.join((self.data_root, sample_info['path']))).copy() if sample_data.mode in ['RGBA']: sample_data = sample_data.convert('RGB') width = sample_info['width'] height = sample_info['height'] sample = { 'data': sample_data, 'width': width, 'height': height } self.data_dict.append(sample) def __len__(self): return len(self.data_dict) def __getitem__(self, idx): sample_info = self.data_dict[idx] if self.load_all is False: sample_data = Image.open('/'.join((self.data_root, sample_info['path']))) if sample_data.mode in ['RGBA']: sample_data = sample_data.convert('RGB') else: sample_data = sample_info['data'] if self.to_gray: sample_data = sample_data.convert('L') # crop (w_start, h_start, w_end, h_end) image = sample_data target = sample_data sample = {'image': image, 'target': target} if self.repeat_crop != 1: image_stacks = [] target_stacks = [] for i in range(self.repeat_crop): sample_patch = self.transform(sample) image_stacks.append(sample_patch['image']) target_stacks.append(sample_patch['target']) return torch.stack(image_stacks), torch.stack(target_stacks) else: sample = self.transform(sample) return sample['image'], sample['target']

这段代码是用来创建一个自定义的 PyTorch 数据集类,名为 Dn_datasets。它的构造函数接受四个参数:data_root,data_dict,transform 和 load_all。其中,data_root 是数据集的根目录,data_dict 是一个字典,包含了数据集中每个样本的路径、宽度和高度等信息,transform 是一个用于数据增强的 torchvision.transforms 实例,load_all 是一个布尔值,指示是否将整个数据集加载到内存中。 在 __init__ 函数中,如果 load_all 是 False,那么 self.data_dict 直接赋值为传入的 data_dict;否则,它会遍历 data_dict 中的每个样本,将其加载到内存中,并将其图像数据、宽度和高度信息封装为一个字典,并将其存储到 self.data_dict 中。 __len__ 函数返回数据集的样本数量,__getitem__ 函数接受一个索引 idx,返回该索引对应的样本。如果 load_all 是 False,那么它会从磁盘上读取该样本的图像数据;否则,它会从 self.data_dict 中读取该样本的图像数据。如果 to_gray 是 True,那么它会将图像转换为灰度图。最后,如果 repeat_crop 大于 1,那么它会对该样本进行多次裁剪,并返回多个图像和目标对作为一个元组;否则,它会对该样本进行单次裁剪,并返回一个图像和目标对作为一个元组。

相关推荐

class AbstractGreedyAndPrune(): def __init__(self, aoi: AoI, uavs_tours: dict, max_rounds: int, debug: bool = True): self.aoi = aoi self.max_rounds = max_rounds self.debug = debug self.graph = aoi.graph self.nnodes = self.aoi.n_targets self.uavs = list(uavs_tours.keys()) self.nuavs = len(self.uavs) self.uavs_tours = {i: uavs_tours[self.uavs[i]] for i in range(self.nuavs)} self.__check_depots() self.reachable_points = self.__reachable_points() def __pruning(self, mr_solution: MultiRoundSolution) -> MultiRoundSolution: return utility.pruning_multiroundsolution(mr_solution) def solution(self) -> MultiRoundSolution: mrs_builder = MultiRoundSolutionBuilder(self.aoi) for uav in self.uavs: mrs_builder.add_drone(uav) residual_ntours_to_assign = {i : self.max_rounds for i in range(self.nuavs)} tour_to_assign = self.max_rounds * self.nuavs visited_points = set() while not self.greedy_stop_condition(visited_points, tour_to_assign): itd_uav, ind_tour = self.local_optimal_choice(visited_points, residual_ntours_to_assign) residual_ntours_to_assign[itd_uav] -= 1 tour_to_assign -= 1 opt_tour = self.uavs_tours[itd_uav][ind_tour] visited_points |= set(opt_tour.targets_indexes) # update visited points mrs_builder.append_tour(self.uavs[itd_uav], opt_tour) return self.__pruning(mrs_builder.build()) class CumulativeGreedyCoverage(AbstractGreedyAndPrune): choice_dict = {} for ind_uav in range(self.nuavs): uav_residual_rounds = residual_ntours_to_assign[ind_uav] if uav_residual_rounds > 0: uav_tours = self.uavs_tours[ind_uav] for ind_tour in range(len(uav_tours)): tour = uav_tours[ind_tour] quality_tour = self.evaluate_tour(tour, uav_residual_rounds, visited_points) choice_dict[quality_tour] = (ind_uav, ind_tour) best_value = max(choice_dict, key=int) return choice_dict[best_value] def evaluate_tour(self, tour : Tour, round_count : int, visited_points : set): new_points = (set(tour.targets_indexes) - visited_points) return round_count * len(new_points) 如何改写上述程序,使其能返回所有已经探索过的目标点visited_points的数量,请用代码表示

import os from PyQt5.QtCore import Qt from PyQt5.QtGui import QPixmap, QIcon from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QVBoxLayout, QHBoxLayout, QTreeView, QFileSystemModel class ImageViewer(QWidget): def init(self, folder_path): super().init() self.folder_path = folder_path self.image_dict = {} self.current_image = None self.setWindowTitle("Image Viewer") self.setFixedSize(1000, 600) self.image_label = QLabel(self) self.image_label.setAlignment(Qt.AlignCenter) self.tree_view = QTreeView() self.tree_view.setMinimumWidth(250) self.tree_view.setMaximumWidth(250) self.model = QFileSystemModel() self.model.setRootPath(folder_path) self.tree_view.setModel(self.model) self.tree_view.setRootIndex(self.model.index(folder_path)) self.tree_view.setHeaderHidden(True) self.tree_view.setColumnHidden(1, True) self.tree_view.setColumnHidden(2, True) self.tree_view.setColumnHidden(3, True) self.tree_view.doubleClicked.connect(self.tree_item_double_clicked) self.main_layout = QHBoxLayout(self) self.main_layout.addWidget(self.tree_view) self.main_layout.addWidget(self.image_label) self.load_images() self.update_image() def load_images(self): for file_name in os.listdir(self.folder_path): if file_name.lower().endswith((".jpg", ".jpeg", ".png", ".gif", ".bmp")): file_path = os.path.join(self.folder_path, file_name) self.image_dict[file_name] = file_path current_image = list(self.image_dict.keys())[0] def update_image(self): if self.current_image is not None: pixmap = QPixmap(self.image_dict[self.current_image]) self.image_label.setPixmap(pixmap.scaled(self.width() - self.tree_view.width(), self.height(), Qt.KeepAspectRatio, Qt.SmoothTransformation)) def tree_item_double_clicked(self, index): file_name = self.model.fileName(index) if file_name in self.image_dict: self.current_image = file_name self.update_image() def keyPressEvent(self, event): if event.key() == Qt.Key_A: self.previous_image() elif event.key() == Qt.Key_D: self.next_image() elif event.key() in [Qt.Key_1, Qt.Key_2, Qt.Key_3, Qt.Key_4, Qt.Key_5]: self.save_text_file(event.key() - Qt.Key_0) def previous_image(self): if self.current_image is not None: file_names = list(self.image_dict.keys()) current_index = file_names.index(self.current_image) if current_index > 0: self.current_image = file_names[current_index - 1] else: self.current_image = file_names[-1] self.update_image() def next_image(self): if self.current_image is not None: file_names = list(self.image_dict.keys()) current_index = file_names.index(self.current_image) if current_index < len(file_names) - 1: self.current_image = file_names[current_index + 1] else: self.current_image = file_names[0] self.update_image() def save_text_file(self, number): if self.current_image is not None: file_name = self.current_image txt_file_path = os.path.join(self.folder_path, os.path.splitext(file_name)[0] + ".txt") with open(txt_file_path, "w") as file: file.write(str(number)) if name == "main": import sys app = QApplication(sys.argv) viewer = ImageViewer("D:/图片/wallpaper") viewer.show() sys.exit(app.exec_())这份代码实现不了使用键盘的A键向上翻页以及D键向下翻页,也实现不了键盘数字键生成相应txt文档,帮我分析一下错在哪里

优化该代码class Path(object): def __init__(self,path,cost1,cost2): self.__path = path self.__cost1 = cost1 self.__cost2 = cost2 #路径上最后一个节点 def getLastNode(self): return self.__path[-1] #获取路径路径 @property def path(self): return self.__path #判断node是否为路径上最后一个节点 def isLastNode(self, node): return node == self.getLastNode() #增加加点和成本产生一个新的path对象 def addNode(self, node, price1,price2): return Path(self.__path+[node],self.__cost1+ price1,self.__cost2+ price2) #输出当前路径 def printPath(self): global num #将num作为循环次数,即红绿灯数量 global distance num = 0 for n in self.__path: if self.isLastNode(node=n): print(n) else: print(n, end="->") num += 1 print("全程约为 {:.4}公里".format(str(self.__cost1))) print("时间大约为 {}分钟".format(str(self.__cost2))) print("需要经过{}个红绿灯".format(num)) distance = self.__cost1 #获取路径总成本的只读属性 @property def travelCost1(self): return self.__cost1 @property def travelCost2(self): return self.__cost2 class DirectedGraph(object): def __init__(self, d): if isinstance(d, dict): self.__graph = d else: self.__graph = dict() print('Sth error') def __generatePath(self, graph, path, end, results): #current = path[-1] current = path.getLastNode() if current == end: results.append(path) else: for n in graph[current]: #if n not in path: if n not in path.path: #self.__generatePath(graph, path + [n], end, results) self.__generatePath(graph, path.addNode(n,self.__graph[path.getLastNode()][n][0],self.__graph[path.getLastNode()][n][1]),end, results) #self.__generatePath(graph,使其能够保存输入记录并且能够查询和显示

class Path(object): def __init__(self,path,distancecost,timecost): self.__path = path self.__distancecost = distancecost self.__timecost = timecost #路径上最后一个节点 def getLastNode(self): return self.__path[-1] #获取路径路径 @property def path(self): return self.__path #判断node是否为路径上最后一个节点 def isLastNode(self, node): return node == self.getLastNode() #增加加点和成本产生一个新的path对象 def addNode(self, node, dprice, tprice): return Path(self.__path+[node],self.__distancecost + dprice,self.__timecost + tprice) #输出当前路径 def printPath(self): for n in self.__path: if self.isLastNode(node=n): print(n) else: print(n, end="->") print(f"最短路径距离(self.__distancecost:.0f)m") print(f"红绿路灯个数(self.__timecost:.0f)个") #获取路径总成本的只读属性 @property def dCost(self): return self.__distancecost @property def tCost(self): return self.__timecost class DirectedGraph(object): def __init__(self, d): if isinstance(d, dict): self.__graph = d else: self.__graph = dict() print('Sth error') #通过递归生成所有可能的路径 def __generatePath(self, graph, path, end, results, distancecostIndex, timecostIndex): current = path.getLastNode() if current == end: results.append(path) else: for n in graph[current]: if n not in path.path: self.__generatePath(graph, path.addNode(n,self.__graph[path.getLastNode()][n][distancecostIndex][timecostIndex]), end, results, distancecostIndex, timecostIndex) #搜索start到end之间时间或空间最短的路径,并输出 def __searchPath(self, start, end, distancecostIndex, timecostIndex): results = [] self.__generatePath(self.__graph, Path([start],0,0), end, results,distancecostIndex,timecostIndex) results.sort(key=lambda p: p.distanceCost) results.sort(key=lambda p: p.timeCost) print('The {} shortest path from '.format("spatially" if distancecostIndex==0 else "temporally"), start, ' to ', end, ' is:', end="") print('The {} shortest path from '.format("spatially" if timecostIndex==0 else "temporally"), start, ' to ', end, ' is:', end="") results[0].printPath() #调用__searchPath搜索start到end之间的空间最短的路径,并输出 def searchSpatialMinPath(self,start, end): self.__searchPath(start,end,0,0) #调用__searc 优化这个代码

最新推荐

recommend-type

pytorch 状态字典:state_dict使用详解

今天小编就为大家分享一篇pytorch 状态字典:state_dict使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望