jacobi迭代法 java_数值分析5-用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组
时间: 2023-12-03 07:43:06 浏览: 206
以下是使用Java实现Jacobi迭代法求解线性方程组的代码:
public class JacobiIteration {
public static void main(String[] args) {
double[][] A = {{10, -1, 2, 0}, {-1, 11, -1, 3}, {2, -1, 10, -1}, {0, 3, -1, 8}};
double[] b = {6, 25, -11, 15};
double[] x = {0, 0, 0, 0};
int n = A.length;
double epsilon = 0.0001;
int maxIterations = 100;
int k = 0;
while (k < maxIterations) {
double[] xNew = new double[n];
for (int i = 0; i < n; i++) {
double s = 0;
for (int j = 0; j < n; j++) {
if (j != i) {
s += A[i][j] * x[j];
}
}
xNew[i] = (b[i] - s) / A[i][i];
}
double error = 0;
for (int i = 0; i < n; i++) {
error += Math.abs(x[i] - xNew[i]);
}
if (error < epsilon) {
break;
}
x = xNew;
k++;
}
System.out.println("Solution:");
for (int i = 0; i < n; i++) {
System.out.println("x[" + i + "] = " + x[i]);
}
}
}
在这个例子中,我们使用Jacobi迭代法求解线性方程组Ax=b,其中矩阵A和向量b分别表示为double[][] A
和double[] b
,解向量x表示为double[] x
。我们设置了一个容差值epsilon
和最大迭代次数maxIterations
,并在迭代过程中计算误差,如果误差小于容差值,则停止迭代。在每次迭代中,我们使用矩阵A、向量b和当前解向量x计算新的解向量xNew,并将其用作下一次迭代的初始解向量。最后,我们输出求解结果。
对于Gauss-Seidel迭代法,代码与Jacobi迭代法类似,只需要将内层循环的求和公式修改为:
double s = 0;
for (int j = 0; j < i; j++) {
s += A[i][j] * xNew[j];
}
for (int j = i + 1; j < n; j++) {
s += A[i][j] * x[j];
}
xNew[i] = (b[i] - s) / A[i][i];
这是因为Gauss-Seidel迭代法使用了最新计算出的解向量xNew,而不是上一次迭代中的解向量x。
相关推荐


















