利用开普勒参数的GPS卫星位置解算与含有伪距的GPS定位方程解算有什么区别

时间: 2024-05-22 22:10:48 浏览: 13
开普勒参数的GPS卫星位置解算是一种基于卫星轨道参数计算卫星位置的方法,它通过计算卫星的轨道参数(包括卫星的轨道半长轴、偏心率、轨道倾角、近地点角度、升交点赤经和升交点赤纬等),来确定卫星的位置。这种方法不需要接收到卫星的信号,因此可以在不需要接收信号的情况下计算卫星位置。 而含有伪距的GPS定位方程解算需要接收到卫星的信号,并且需要测量卫星信号的到达时间差、卫星信号传播的时间、接收机与卫星之间的距离等信息,然后通过计算得出接收机的位置。这种方法需要接收卫星信号,并且需要测量许多参数,因此计算复杂度较高。 因此,开普勒参数的GPS卫星位置解算和含有伪距的GPS定位方程解算两种方法之间存在较大的区别。开普勒参数的GPS卫星位置解算可以用来确定卫星位置,而含有伪距的GPS定位方程解算则可以用来确定接收机的位置。
相关问题

请再用MATLAB语言写一个利用开普勒方程递推轨道的程序

以下是利用开普勒方程递推轨道的MATLAB程序: %% 利用开普勒方程递推轨道程序 clear all;clc; %% 输入参数 mu = 398600.4418; % 地球引力常数 a = 7000; % 初轨道长半轴 e = 0.0; % 初轨道离心率 i = 30*pi/180; % 初轨道倾角 RAAN = 0; % 升交点赤经 omega = 0; % 近地点幅角 M0 = 0; % 初平近点角 %% 计算轨道参数 n = sqrt(mu/a^3); % 平均角速度 T = 2*pi/n; % 周期 E0 = M0; % 初偏近点角 while 1 E = M0 + e*sin(E0); % 开普勒方程 if abs(E - E0) < 1e-8 % 判断E是否收敛 break; end E0 = E; % 更新E0 end theta = 2*atan(sqrt((1+e)/(1-e))*tan(E/2)); % 真近点角 h = sqrt(mu*a*(1-e^2)); % 轨道角动量 p = a*(1-e^2); % 焦距 r = p/(1+e*cos(theta)); % 距离 v = sqrt(2*(E+mu/r)); % 速度 r_dot = sqrt(mu*p)/r*v*sin(theta); % 距离变化率 r_theta_dot = h/r^2; % 弧速度 r_cross_v = [0,0,r*r_theta_dot]; % 距离矢量与速度矢量的叉积 v_cross_h = cross([0,0,h], [r*cos(theta),r*sin(theta),0]); % 速度矢量与角动量矢量的叉积 e_vec = 1/mu*((v^2-mu/r)*[r*cos(theta),r*sin(theta),0]-r_dot*[0,0,r]-r_cross_v); % 离心率矢量 i_vec = [cos(RAAN)*cos(omega)-sin(RAAN)*sin(omega)*cos(i), sin(RAAN)*cos(omega)+cos(RAAN)*sin(omega)*cos(i), sin(omega)*sin(i)]; % 轨道面法向量 n_vec = cross([0,0,1], i_vec); % 升交点赤道面法向量 h_vec = [r*sqrt(v^2-(r_dot/r)^2)*sin(theta),-r*sqrt(v^2-(r_dot/r)^2)*cos(theta),h]; % 角动量矢量 RAAN_dot = n/h_vec(3); % 升交点赤经变化率 omega_dot = dot(e_vec, n_vec)/(e*h); % 近地点幅角变化率 i_dot = dot(h_vec, cross(n_vec, e_vec))/h; % 倾角变化率 %% 递推计算 t = 0; % 初始时间 dt = 60; % 时间步长 M = M0 + n*t; % 平近点角 while M < 2*pi % 递推直到一圈结束 E0 = M; % 初偏近点角 while 1 E = M + e*sin(E0); % 开普勒方程 if abs(E - E0) < 1e-8 % 判断E是否收敛 break; end E0 = E; % 更新E0 end theta = 2*atan(sqrt((1+e)/(1-e))*tan(E/2)); % 真近点角 r = p/(1+e*cos(theta)); % 距离 v = sqrt(2*(E+mu/r)); % 速度 r_dot = sqrt(mu*p)/r*v*sin(theta); % 距离变化率 r_theta_dot = h/r^2; % 弧速度 r_cross_v = [0,0,r*r_theta_dot]; % 距离矢量与速度矢量的叉积 v_cross_h = cross([0,0,h], [r*cos(theta),r*sin(theta),0]); % 速度矢量与角动量矢量的叉积 e_vec = 1/mu*((v^2-mu/r)*[r*cos(theta),r*sin(theta),0]-r_dot*[0,0,r]-r_cross_v); % 离心率矢量 i_vec = [cos(RAAN)*cos(omega)-sin(RAAN)*sin(omega)*cos(i), sin(RAAN)*cos(omega)+cos(RAAN)*sin(omega)*cos(i), sin(omega)*sin(i)]; % 轨道面法向量 n_vec = cross([0,0,1], i_vec); % 升交点赤道面法向量 h_vec = [r*sqrt(v^2-(r_dot/r)^2)*sin(theta),-r*sqrt(v^2-(r_dot/r)^2)*cos(theta),h]; % 角动量矢量 RAAN = RAAN + RAAN_dot*dt; % 更新升交点赤经 omega = omega + omega_dot*dt; % 更新近地点幅角 i = i + i_dot*dt; % 更新倾角 t = t + dt; % 更新时间 M = M0 + n*t; % 平近点角 end %% 输出结果 fprintf('轨道长半轴a = %.2f km\n', a); fprintf('轨道离心率e = %.2f\n', e); fprintf('轨道倾角i = %.2f deg\n', i*180/pi); fprintf('升交点赤经RAAN = %.2f deg\n', RAAN*180/pi); fprintf('近地点幅角omega = %.2f deg\n', omega*180/pi); fprintf('初平近点角M0 = %.2f deg\n', M0*180/pi); fprintf('轨道周期T = %.2f min\n', T/60); fprintf('轨道面法向量 = [%.2f %.2f %.2f]\n', i_vec(1), i_vec(2), i_vec(3)); fprintf('升交点赤道面法向量 = [%.2f %.2f %.2f]\n', n_vec(1), n_vec(2), n_vec(3)); fprintf('角动量矢量 = [%.2f %.2f %.2f] km^2/s\n', h_vec(1), h_vec(2), h_vec(3)); fprintf('离心率矢量 = [%.2f %.2f %.2f]\n', e_vec(1), e_vec(2), e_vec(3));

利用Adams积分计算开普勒卫星积分轨道的MATLAB程序

以下是利用Adams积分计算开普勒卫星积分轨道的MATLAB程序: ```matlab % Adams积分计算开普勒卫星积分轨道 % a: 半长轴,e: 离心率,i: 倾角,OMEGA: 升交点赤经,omega: 近心点幅角,M0: 初始平近点角 % n: 平均运动角速度,t: 总时间,dt: 时间步长 function [X, Y, Z] = adams_kepler(a, e, i, OMEGA, omega, M0, n, t, dt) % 计算初始位置和速度 E0 = kepler_eq(M0, e); [r0, v0] = kepler_rv(a, e, i, OMEGA, omega, E0, n); X(1) = r0(1); Y(1) = r0(2); Z(1) = r0(3); Vx(1) = v0(1); Vy(1) = v0(2); Vz(1) = v0(3); % Adams方法计算位置和速度 for k = 1:round(t/dt) % 预测器 if k <= 4 [r, v] = kepler_rv(a, e, i, OMEGA, omega, kepler_eq(M0 + n*k*dt, e), n); X(k+1) = r(1); Y(k+1) = r(2); Z(k+1) = r(3); Vx(k+1) = v(1); Vy(k+1) = v(2); Vz(k+1) = v(3); else X(k+1) = X(k) + dt/720 * (1901*Vx(k) - 2774*Vx(k-1) + 2616*Vx(k-2) - 1274*Vx(k-3) + 251*Vx(k-4)); Y(k+1) = Y(k) + dt/720 * (1901*Vy(k) - 2774*Vy(k-1) + 2616*Vy(k-2) - 1274*Vy(k-3) + 251*Vy(k-4)); Z(k+1) = Z(k) + dt/720 * (1901*Vz(k) - 2774*Vz(k-1) + 2616*Vz(k-2) - 1274*Vz(k-3) + 251*Vz(k-4)); [r, v] = kepler_rv(a, e, i, OMEGA, omega, kepler_eq(M0 + n*(k+1)*dt, e), n); Vx(k+1) = Vx(k) + dt/720 * (1901*v(1) - 2774*Vx(k) + 2616*Vx(k-1) - 1274*Vx(k-2) + 251*Vx(k-3)); Vy(k+1) = Vy(k) + dt/720 * (1901*v(2) - 2774*Vy(k) + 2616*Vy(k-1) - 1274*Vy(k-2) + 251*Vy(k-3)); Vz(k+1) = Vz(k) + dt/720 * (1901*v(3) - 2774*Vz(k) + 2616*Vz(k-1) - 1274*Vz(k-2) + 251*Vz(k-3)); end end % 绘制轨道图 plot3(X, Y, Z); xlabel('X'); ylabel('Y'); zlabel('Z'); title('Kepler orbit'); end % Kepler方程求解函数 function E = kepler_eq(M, e) E0 = M; while 1 E = E0 + (M - E0 + e*sin(E0)) / (1 - e*cos(E0)); if abs(E - E0) < 1e-8 break; end E0 = E; end end % Kepler元素转换为位置和速度函数 function [r, v] = kepler_rv(a, e, i, OMEGA, omega, E, n) p = a*(1 - e^2); r = [p*cos(E)/(1 + e*cos(E)); p*sin(E)/(1 + e*cos(E)); 0]; v = [-n*p*sin(E)/(1 + e*cos(E)); n*p*sqrt(1 - e^2)*cos(E)/(1 + e*cos(E)); 0]; R3_OMEGA = [cos(OMEGA), sin(OMEGA), 0; -sin(OMEGA), cos(OMEGA), 0; 0, 0, 1]; R1_i = [1, 0, 0; 0, cos(i), sin(i); 0, -sin(i), cos(i)]; R3_omega = [cos(omega), sin(omega), 0; -sin(omega), cos(omega), 0; 0, 0, 1]; Q = R3_OMEGA * R1_i * R3_omega; r = Q * r; v = Q * v; end ``` 使用方法: ```matlab adams_kepler(a, e, i, OMEGA, omega, M0, n, t, dt); ``` 其中,a、e、i、OMEGA、omega、M0、n分别为开普勒元素中的半长轴、离心率、倾角、升交点赤经、近心点幅角、初始平近点角和平均运动角速度,t为总时间,dt为时间步长。函数会返回计算得到的位置坐标数组X、Y、Z。

相关推荐

最新推荐

recommend-type

GPS卫星运动及定位matlab仿真.毕业设计.doc

全球定位系统是具有全球性、全能性、全天候优势的导航定位、定时和测速系统,现在在全球很多领域获得了应用。...通过此次设计,对于GPS卫星有了初步的认识,对于静态单点定位、伪距等相关概念有一定了解。
recommend-type

GPS卫星运行速度的计算.docx

通常,人们广泛使用开普勒轨道参数对GPS卫星无摄运行轨道进行描述。 以地球地心O为原点,建立如图1-1所示的三维直角坐标系 ,其中,X与Y轴完全在卫星轨道平面内,且X轴与卫星运行轨道的椭圆长轴重合并指向近地点。...
recommend-type

GPS卫星的导航电文和卫星信号

4.2.1 概述 GPS 卫星信号是 GPS 卫星向广大用户发送的用于导航定位的调制波,它包含有:载波、测距码和数据码。时钟基本频率为 10.23MHz。GPS 信号的调制方式是采用 Binary Phase Shift Keying(BPSK)调制方式。
recommend-type

教育培训.exe

微信小程序源码是指开发者编写的用于创建微信小程序的代码文件,可以是包含小程序界面设计、逻辑处理、数据交互等方面的代码。通过编写源码,开发者可以实现自己想要的小程序功能和界面。 通常,微信小程序的源码包括以下几个主要部分: .json 文件:用于配置小程序的全局配置或页面配置,包括页面路径、页面标题栏样式、底部 tabBar 配置等。 .wxml 文件:用于编写小程序页面的结构,类似于HTML,用于描述页面的组件和布局。 .wxss 文件:用于编写小程序页面的样式表,类似于CSS,用于定义页面的样式和布局。 .js 文件:用于编写小程序页面的逻辑处理和交互,通过调用小程序 API 实现页面的数据处理、事件处理等功能。 开发者可以通过编辑这些源码文件来创建个性化的微信小程序,实现各种功能,例如轮播图、下拉刷新、表单提交等。在开发完成后,通过微信开发者工具将源码上传并发布到微信小程序平台,用户便可以通过微信扫描小程序码或搜索使用这个小程序。
recommend-type

GO婚礼设计创业计划:技术驱动的婚庆服务

"婚礼GO网站创业计划书" 在创建婚礼GO网站的创业计划书中,创业者首先阐述了企业的核心业务——GO婚礼设计,专注于提供计算机软件销售和技术开发、技术服务,以及与婚礼相关的各种服务,如APP制作、网页设计、弱电工程安装等。企业类型被定义为服务类,涵盖了一系列与信息技术和婚礼策划相关的业务。 创业者的个人经历显示了他对行业的理解和投入。他曾在北京某科技公司工作,积累了吃苦耐劳的精神和实践经验。此外,他在大学期间担任班长,锻炼了团队管理和领导能力。他还参加了SYB创业培训班,系统地学习了创业意识、计划制定等关键技能。 市场评估部分,目标顾客定位为本地的结婚人群,特别是中等和中上收入者。根据数据显示,广州市内有14家婚庆公司,该企业预计能占据7%的市场份额。广州每年约有1万对新人结婚,公司目标接待200对新人,显示出明确的市场切入点和增长潜力。 市场营销计划是创业成功的关键。尽管文档中没有详细列出具体的营销策略,但可以推断,企业可能通过线上线下结合的方式,利用社交媒体、网络广告和本地推广活动来吸引目标客户。此外,提供高质量的技术解决方案和服务,以区别于竞争对手,可能是其市场差异化策略的一部分。 在组织结构方面,未详细说明,但可以预期包括了技术开发团队、销售与市场部门、客户服务和支持团队,以及可能的行政和财务部门。 在财务规划上,文档提到了固定资产和折旧、流动资金需求、销售收入预测、销售和成本计划以及现金流量计划。这表明创业者已经考虑了启动和运营的初期成本,以及未来12个月的收入预测,旨在确保企业的现金流稳定,并有可能享受政府对大学生初创企业的税收优惠政策。 总结来说,婚礼GO网站的创业计划书详尽地涵盖了企业概述、创业者背景、市场分析、营销策略、组织结构和财务规划等方面,为初创企业的成功奠定了坚实的基础。这份计划书显示了创业者对市场的深刻理解,以及对技术和婚礼行业的专业认识,有望在竞争激烈的婚庆市场中找到一席之地。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【基础】PostgreSQL的安装和配置步骤

![【基础】PostgreSQL的安装和配置步骤](https://img-blog.csdnimg.cn/direct/8e80154f78dd45e4b061508286f9d090.png) # 2.1 安装前的准备工作 ### 2.1.1 系统要求 PostgreSQL 对系统硬件和软件环境有一定要求,具体如下: - 操作系统:支持 Linux、Windows、macOS 等主流操作系统。 - CPU:推荐使用多核 CPU,以提高数据库处理性能。 - 内存:根据数据库规模和并发量确定,一般建议 8GB 以上。 - 硬盘:数据库文件和临时文件需要占用一定空间,建议预留足够的空间。
recommend-type

字节跳动面试题java

字节跳动作为一家知名的互联网公司,在面试Java开发者时可能会关注以下几个方面的问题: 1. **基础技能**:Java语言的核心语法、异常处理、内存管理、集合框架、IO操作等是否熟练掌握。 2. **面向对象编程**:多态、封装、继承的理解和应用,可能会涉及设计模式的提问。 3. **并发编程**:Java并发API(synchronized、volatile、Future、ExecutorService等)的使用,以及对并发模型(线程池、并发容器等)的理解。 4. **框架知识**:Spring Boot、MyBatis、Redis等常用框架的原理和使用经验。 5. **数据库相
recommend-type

微信行业发展现状及未来发展趋势分析

微信行业发展现状及未来行业发展趋势分析 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信月活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。 微信作为流量枢纽,已经成为移动互联网的基础设施,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 中国的整体移动互联网人均单日使用时长已经较高水平。18Q1中国移动互联网的月度总时长达到了77千亿分钟,环比17Q4增长了14%,单人日均使用时长达到了273分钟,环比17Q4增长了15%。而根据抽样统计,社交始终占据用户时长的最大一部分。2018年3月份,社交软件占据移动互联网35%左右的时长,相比2015年减少了约10pct,但仍然是移动互联网当中最大的时长占据者。 争夺社交软件份额的主要系娱乐类App,目前占比达到约32%左右。移动端的流量时长分布远比PC端更加集中,通常认为“搜索下載”和“网站导航”为PC时代的流量枢纽,但根据统计,搜索的用户量约为4.5亿,为各类应用最高,但其时长占比约为5%左右,落后于网络视频的13%左右位于第二名。PC时代的网络社交时长占比约为4%-5%,基本与搜索相当,但其流量分发能力远弱于搜索。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依