pytorch实现resnet
时间: 2023-03-26 14:03:53 浏览: 86
可以使用PyTorch实现ResNet。ResNet是一种深度卷积神经网络,它使用残差块来解决梯度消失问题,从而使得网络可以更深。在PyTorch中,可以使用torchvision.models中的resnet模块来实现ResNet。
相关问题
Pytorch实现resnet18
好的,以下是PyTorch实现ResNet18的代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512*block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def ResNet18():
return ResNet(BasicBlock, [2,2,2,2])
```
这是标准的ResNet18实现,可以在CIFAR-10等数据集上进行训练和测试。如果要使用其他的ResNet变体,只需要更改 `_make_layer` 方法和 `ResNet` 类的初始化函数即可。
pytorch实现resnet50
ResNet50是一种深度卷积神经网络,它是由微软研究院的Kaiming He等人在2015年提出的。ResNet50的主要特点是使用了残差块(Residual Block)来解决深度神经网络中的梯度消失问题,从而使得网络可以更深,更容易训练。PyTorch是一个基于Python的科学计算库,它可以作为NumPy的替代品,同时也可以利用GPU的性能进行加速计算。PyTorch提供了丰富的工具和接口,可以方便地实现ResNet50网络。
实现ResNet50的步骤如下:
1.导入必要的库和模块,包括torch、torchvision等。
2.定义ResNet50网络结构,包括卷积层、池化层、残差块等。
3.定义损失函数和优化器,如交叉熵损失函数和Adam优化器。
4.加载数据集,包括训练集和测试集。
5.训练模型,包括前向传播、反向传播、参数更新等。
6.评估模型性能,包括
阅读全文