jieguo = t.map(renwu, ["第一个线程", "第二个线程", "第三个线程"], [1, 2, 3]) 解释下这段代码
时间: 2023-09-18 13:07:04 浏览: 59
这段代码使用了线程池中的map()方法,同时提供了两个可迭代的参数,一个是任务函数renwu,另一个是参数列表,参数列表中的每一个元素对应任务函数的一个参数。这里map()方法会将任务函数renwu依次应用到参数列表中的每一个元素上,并发执行各个任务,最后返回一个迭代器对象jieguo,通过迭代器可以获取各个任务的执行结果。在这个例子中,任务函数renwu接收两个参数,第一个参数是线程的名称,第二个参数是等待的时间,表示线程需要等待多少秒后才能完成任务。参数列表中的[1, 2, 3]表示三个线程分别需要等待1秒、2秒、3秒才能完成任务。
相关问题
from tifffile import imread as tfread import numpy as np from Raserize import arr2raster from osgeo import gdal fcn = r'E:\姜璐\再修改复现\轮种\G边缘约束\2\A重采样\xinmin_Resample.tif' # 加入高分分割后的重采样结果 fcn = tfread(fcn) obj = r'E:\姜璐\农作物提取\中期修改代码复现\F高分分割结果\有坐标\新民分割.tif' # 高分辨率的分割结果影像 obj = tfread(obj) num_bands = 8 # 分类数(需算上背景类0) num_obj = obj.max() + 1 # 分割对象数 v = np.zeros((num_obj, num_bands)) # 建一个行为264500,列为8的全0数组 res = np.zeros_like(fcn) # 建一个和fcn同样类型和形状的全0数组 h, w = obj.shape[0], obj.shape[1] # 获取高分分割的行为27674,列为43894 for obj_row, fcn_row in zip(obj, fcn): # 遍历二维数组 for obj_pix, fcn_pix in zip(obj_row, fcn_row): # v[obj_pix, fcn_pix] += 1 # 取obj和fcn的像素值 v = np.argmax(v[:, 1:], axis=-1) + 1 # axis=-1,返回每行的索引最大值,v[:, 1:]取v数组中,行的全部元素,列除第一列的全部元素 for i in range(h): for j in range(w): res[i, j] = v[obj[i, j]] im_path = r'E:\姜璐\再修改复现\轮种\G边缘约束\A重采样\xinmin_yueshu.tif' # 提供坐标投影信息,加入高分分割后的重采样结果 dataset = gdal.Open(im_path) prj = dataset.GetProjection() trans = dataset.GetGeoTransform() save_path = r'E:\姜璐\再修改复现\测试\xinmin_jieguo.tif' # 保存位置 arr2raster(res, save_path, is_label=True, prj=prj, trans=trans, color=True)每行代码意思
这段代码是在Python中使用tifffile库中的imread函数,将读取的图像导入为numpy的多维数组。然后使用Raserize库中的arr2raster函数将数组转换为光栅图像。最后使用gdal库中的函数读取tif文件。其中,变量fcn指向一个tif文件的路径。
# 9.绘制结果 plot_size = 200 plt.figure(figsize=(12, 8)) plt.plot(scaler.inverse_transform((model(x_train_tensor).detach().numpy()[: plot_size]).reshape(-1, 1)), "b") plt.plot(scaler.inverse_transform(y_train_tensor.detach().numpy().reshape(-1, 1)[: plot_size]), "r") plt.legend() plt.show() y_test_pred = model(x_test_tensor) # data是一个以为度得列表 ,这样是把数据写进去一列 print("--------------------------") yuce=scaler.inverse_transform(y_test_pred.detach().numpy()) true=scaler.inverse_transform(y_test_tensor.detach().numpy().reshape(-1, 1)) res = [] for i in range(len(yuce)): temp=[] temp.append(true[i][0]) temp.append(yuce[i][0]) # print() # print(yuce[i][0]) res.append(temp) columns = ['真实值', '预测值'] test = pd.DataFrame(columns=columns, data=res) test.to_csv('jieguo.csv') plt.figure(figsize=(12, 8)) plt.plot(scaler.inverse_transform(y_test_pred.detach().numpy()[: plot_size]), "b") plt.plot(scaler.inverse_transform(y_test_tensor.detach().numpy().reshape(-1, 1)[: plot_size]), "r") plt.legend() plt.show()
这段代码用于绘制模型的预测结果和真实值,并将结果保存到一个名为"jieguo.csv"的文件中。
首先,我们设置了绘图的尺寸为12x8,并使用蓝色线条绘制了模型对训练数据的预测结果,使用红色线条绘制了真实值。然后,通过调用`plt.legend()`方法添加图例,并通过`plt.show()`显示图形。
接下来,我们使用模型对测试数据进行预测,并使用`scaler.inverse_transform()`方法将预测值和真实值转换回原始数据的尺度。然后,我们将结果保存到一个名为"jieguo.csv"的文件中。
最后,我们再次绘制了模型对测试数据的预测结果和真实值,并通过`plt.legend()`方法添加图例,并通过`plt.show()`显示图形。
请注意,这段代码中的绘图部分可能需要依赖matplotlib库进行绘图操作,请确保已经正确安装并导入该库。另外,代码中涉及到的变量和函数调用需要根据实际情况进行替换。
阅读全文