利用Levenberg-Marquardt算法对相机标定结果进行优化的代码(matlab)
时间: 2023-07-01 15:13:16 浏览: 126
以下是利用Levenberg-Marquardt算法对相机标定结果进行优化的Matlab代码:
```matlab
function [K, R, t, error] = optimizeCalibration(K, R, t, X, x)
% K - intrinsic matrix
% R - rotation matrix
% t - translation vector
% X - 3D points
% x - 2D points
% flatten the matrices into a single vector for optimization
params = [K(1, 1), K(1, 2), K(1, 3), K(2, 2), K(2, 3), R(1, :), R(2, :), R(3, :), t];
% define the optimization options
options = optimoptions('lsqnonlin', 'Algorithm', 'levenberg-marquardt', 'Display', 'off');
% define the objective function
fun = @(params)calibrationError(params, X, x);
% optimize the parameters
params = lsqnonlin(fun, params, [], [], options);
% convert the optimized vector back into matrices
K = [params(1), params(2), params(3); 0, params(4), params(5); 0, 0, 1];
R = [params(6:8); params(9:11); params(12:14)];
t = params(15:17)';
% calculate the final error
error = norm(fun(params));
end
function error = calibrationError(params, X, x)
% convert the vector into matrices
K = [params(1), params(2), params(3); 0, params(4), params(5); 0, 0, 1];
R = [params(6:8); params(9:11); params(12:14)];
t = params(15:17)';
% project the 3D points into 2D
x_pred = projectPoints(X, K, R, t);
% calculate the error between the predicted and observed 2D points
error = x_pred - x;
error = error(:);
end
function x = projectPoints(X, K, R, t)
% project the 3D points into 2D using the intrinsic and extrinsic matrices
x = K * (R * X' + repmat(t, 1, size(X, 1)));
x = x(1:2, :)';
end
```
其中,calibrationError函数用于定义优化的目标函数,projectPoints函数用于将3D点投影到2D平面上,optimizeCalibration函数用于执行优化过程,返回优化后的相机参数和误差。
阅读全文