计算上证50ETF隐含波动率的代码
时间: 2024-12-18 16:21:38 浏览: 24
计算上证50ETF(通常指交易代码为510050的基金)的隐含波动率通常涉及到期权定价模型,如布莱克-斯科尔斯模型。在Python中,你可以使用`yfinance`库获取历史数据,然后结合`scipy.stats`中的方差公式来估算。下面是一个简化的示例代码:
```python
import yfinance as yf
from scipy.stats import norm
import numpy as np
# 下载上证50ETF的历史价格数据
data = yf.download('510050.SS', period='1y') # 获取过去一年的数据
prices = data['Close']
# 首先,假设我们只关注到期日最近的期权价格
last_option_price = ... # 假设已经从交易所API或其他来源获取到期权价格
strike_price = ... # 权证的执行价格
expiration_date = ... # 权证的有效期,通常以天数表示
# 使用Black-Scholes模型的公式计算隐含波动率
def implied_volatility(stock_price, option_price, strike_price, t):
d1 = (np.log(stock_price / strike_price) + (0.5 * volatility ** 2 * t)) / (volatility * np.sqrt(t))
d2 = d1 - volatility * np.sqrt(t)
call_value = stock_price * norm.cdf(d1) - strike_price * norm.cdf(d2)
volatility_squared = (np.log(stock_price / strike_price) + (call_value - option_price) / stock_price) / (d1)
# 返回正值的隐含波动率
return np.clip(volatility_squared, a_min=0, a_max=np.inf)
# 设置合理的初始隐含波动率范围进行二分法搜索
initial_volatility_range = (0.05, 0.4) # 示例范围,实际应用中可能会更广
volatility = initial_volatility_range[0] # 初始猜测值
while True:
implied_volatility_current = implied_volatility(prices[-1], last_option_price, strike_price, expiration_date / 365)
if abs(option_price - implied_volatility_current) < tolerance: # 满足精度要求的误差
break
elif implied_volatility_current > option_price: # 隐含波动率过大
volatility = initial_volatility_range[0]
else: # 隐含波动率过小
volatility = initial_volatility_range[1]
initial_volatility_range = (initial_volatility_range[0], volatility) # 缩小搜索范围
print("上证50 ETF的隐含波动率为:", volatility)
阅读全文