data = input("请输入一行数字:")num_list = [int(num) for num in data.split()]print(num_list)
时间: 2024-06-05 07:07:43 浏览: 93
这是一个 Python 代码片段,作用是将用户输入的一行数字字符串转换成一个数字列表并输出。
具体解释如下:
- `input("请输入一行数字:")`:提示用户输入一行数字,并将用户输入的内容以字符串形式存储在变量 `data` 中。
- `data.split()`:将字符串 `data` 按空格切分,返回一个由每个数字组成的列表。
- `int(num)`:将列表中的每个字符串数字转换成整型数字。
- `num_list = [int(num) for num in data.split()]`:将转换后的整型数字存储在列表 `num_list` 中。
- `print(num_list)`:输出列表 `num_list`。
举个例子,如果用户输入了 "1 2 3 4 5",则代码会输出 `[1, 2, 3, 4, 5]`。
相关问题
下面的代码哪里有问题,帮我改一下from __future__ import print_function import numpy as np import tensorflow import keras from keras.models import Sequential from keras.layers import Dense,Dropout,Flatten from keras.layers import Conv2D,MaxPooling2D from keras import backend as K import tensorflow as tf import datetime import os np.random.seed(0) from sklearn.model_selection import train_test_split from PIL import Image import matplotlib.pyplot as plt from keras.datasets import mnist images = [] labels = [] (x_train,y_train),(x_test,y_test)=mnist.load_data() X = np.array(images) print (X.shape) y = np.array(list(map(int, labels))) print (y.shape) x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) print (x_train.shape) print (x_test.shape) print (y_train.shape) print (y_test.shape) ############################ ########## batch_size = 20 num_classes = 4 learning_rate = 0.0001 epochs = 10 img_rows,img_cols = 32 , 32 if K.image_data_format() =='channels_first': x_train =x_train.reshape(x_train.shape[0],1,img_rows,img_cols) x_test = x_test.reshape(x_test.shape[0],1,img_rows,img_cols) input_shape = (1,img_rows,img_cols) else: x_train = x_train.reshape(x_train.shape[0],img_rows,img_cols,1) x_test = x_test.reshape(x_test.shape[0],img_rows,img_cols,1) input_shape =(img_rows,img_cols,1) x_train =x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:',x_train.shape) print(x_train.shape[0],'train samples') print(x_test.shape[0],'test samples')
代码中存在以下问题:
1. 变量 images 和 labels 没有被赋值,而后面却使用了它们来构造 X 和 y,导致 X 和 y 的值都为空。
2. 导入的 mnist 数据集没有被使用,而是使用了未定义的 images 和 labels,需要将其替换为 mnist 数据集。
3. input_shape 的值应该是三元组 (img_rows, img_cols, 1),而代码中缺少了最后一个 1。
4. 在 if K.image_data_format() =='channels_first': 分支中,x_train 和 x_test 被改变了形状,但 y_train 和 y_test 却没有被改变,需要将其同步修改。
下面是修改后的代码:
```
from __future__ import print_function
import numpy as np
import tensorflow
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
import tensorflow as tf
import datetime
import os
np.random.seed(0)
from sklearn.model_selection import train_test_split
from PIL import Image
import matplotlib.pyplot as plt
from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
print(x_train.shape)
print(y_train.shape)
############################
##########
batch_size = 20
num_classes = 10
learning_rate = 0.0001
epochs = 10
img_rows, img_cols = 32, 32
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (img_rows, img_cols, 1)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
print('input_shape:', input_shape)
```
import itertools import warnings import pandas as pd import numpy as np import statsmodels.api as sm from datetime import datetime from statsmodels.tsa.arima.model import ARIMA from statsmodels.graphics.tsaplots import plot_acf, plot_pacf from statsmodels.stats.diagnostic import acorr_ljungbox from sklearn.model_selection import train_test_split data = pd.read_csv('data.csv', parse_dates=['x'], index_col='x') train_data1, test_data = train_test_split(data1, test_size=0.3, shuffle=False) data['lag1'] = data['y'].shift(1) data['lag2'] = data['y'].shift(2) data['lag3'] = data['y'].shift(3) data['lag4'] = data['y'].shift(4) data['lag5'] = data['y'].shift(5) data['lag6'] = data['y'].shift(6) data['lag7'] = data['y'].shift(7) data.dropna(inplace=True) train_data, test_data1 = train_test_split(data, test_size=0.3, shuffle=False) g=int(input("输入P的峰值: ")) h=int(input("输入D的峰值: ")) i=int(input("输入Q的峰值: ")) p = range(0, g) d = range(0, h) q = range(0, i) pdq = list(itertools.product(p, d, q)) best_pdq = None best_aic = np.inf for param in pdq: model = sm.tsa.ARIMA(data['y'], exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']], order=param) results = model.fit() aic = results.aic if aic < best_aic: best_pdq = param best_aic = aic a=best_pdq[0] b=best_pdq[1] c=best_pdq[2] model = ARIMA(data['y'], exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']], order=(a,b,c)) results = model.fit() max_lag = model.k_ar model_fit = model.fit() resid = model_fit.resid lb_test = acorr_ljungbox(resid) p_value=round(lb_test['lb_pvalue'][max_lag],4) if p_value>0.05: forecast = results.forecast(steps=1, exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']].iloc[-1:]) forecast.index[0].strftime('%Y-%m') print("下个月的预测结果是",round(forecast[0])) def comput_acc(real,predict,level): num_error=0 for i in range(len(real)): if abs(real[i]-predict[i])/real[i]>level: num_error+=1 return 1-num_error/len(real) print("置信水平:{},预测准确率:{}".format(0.2,comput_acc(test_x,y_pred,0.2))) else: print('输入的数据不适合使用arima模型进行预测分析,请尝试其他模型')如何修改代码使其正常运行
在你的代码中,有一些变量名没有定义,例如`data1`和`test_x`,所以我假设这些是之前定义过的变量并且进行了更改。此外,需要加入一些库的引用,如`itertools`和`sklearn`。以下是修改后的代码:
```
import itertools
import warnings
import pandas as pd
import numpy as np
import statsmodels.api as sm
from datetime import datetime
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.stats.diagnostic import acorr_ljungbox
from sklearn.model_selection import train_test_split
data = pd.read_csv('data.csv', parse_dates=['x'], index_col='x')
train_data1, test_data = train_test_split(data, test_size=0.3, shuffle=False)
data['lag1'] = data['y'].shift(1)
data['lag2'] = data['y'].shift(2)
data['lag3'] = data['y'].shift(3)
data['lag4'] = data['y'].shift(4)
data['lag5'] = data['y'].shift(5)
data['lag6'] = data['y'].shift(6)
data['lag7'] = data['y'].shift(7)
data.dropna(inplace=True)
train_data, test_data1 = train_test_split(data, test_size=0.3, shuffle=False)
g=int(input("输入P的峰值: "))
h=int(input("输入D的峰值: "))
i=int(input("输入Q的峰值: "))
p = range(0, g)
d = range(0, h)
q = range(0, i)
pdq = list(itertools.product(p, d, q))
best_pdq = None
best_aic = np.inf
for param in pdq:
model = sm.tsa.ARIMA(data['y'], exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']], order=param)
results = model.fit()
aic = results.aic
if aic < best_aic:
best_pdq = param
best_aic = aic
a=best_pdq[0]
b=best_pdq[1]
c=best_pdq[2]
model = ARIMA(data['y'], exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']], order=(a,b,c))
results = model.fit()
max_lag = model.k_ar
model_fit = model.fit()
resid = model_fit.resid
lb_test = acorr_ljungbox(resid)
p_value=round(lb_test[1][max_lag],4)
if p_value>0.05:
forecast = results.forecast(steps=1, exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']].iloc[-1:])
forecast.index[0].strftime('%Y-%m')
print("下个月的预测结果是",round(forecast[0]))
def comput_acc(real,predict,level):
num_error=0
for i in range(len(real)):
if abs(real[i]-predict[i])/real[i]>level:
num_error+=1
return 1-num_error/len(real)
y_pred = results.predict(start=test_data1.index[0], end=test_data1.index[-1], exog=test_data1[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']])
print("置信水平:{},预测准确率:{}".format(0.2,comput_acc(test_data1['y'],y_pred,0.2)))
else:
print('输入的数据不适合使用arima模型进行预测分析,请尝试其他模型')
```
需要注意的是,由于ARIMA模型需要对历史数据进行训练,因此在使用`predict`方法来进行预测时,需要指定预测的时间范围,这里已经加入了相应的代码。同时,在计算预测准确率时,需要使用测试集的真实值和预测值,因此需要将测试集的真实值作为参数传入`comput_acc`函数中。
阅读全文