调用pulp库来重写以上代码
时间: 2023-11-06 10:04:23 浏览: 106
好的,以下是使用pulp库重新编写的代码:
```python
import pulp as lp
import numpy as np
def integer_cutting_plane(c, A, b, bounds):
relaxed_A = A
relaxed_b = b
while True:
lp_model = lp.LpProblem("Integer Cutting Plane", lp.LpMinimize)
# 定义决策变量
x = [lp.LpVariable(f"x{i}", lowBound=bound[0], upBound=bound[1], cat='Integer') for i, bound in enumerate(bounds)]
# 定义目标函数
lp_model += sum(c[i] * x[i] for i in range(len(c)))
# 添加松弛约束
for i in range(len(relaxed_A)):
lp_model += sum(relaxed_A[i][j] * x[j] for j in range(len(x))) <= relaxed_b[i]
lp_model.solve()
if lp_model.status == lp.LpStatusOptimal:
return np.array([int(x[i].varValue) for i in range(len(x))])
new_constraint = [relaxed_A[i] @ [x[j].varValue for j in range(len(x))] <= relaxed_b[i] for i in range(len(relaxed_A))]
relaxed_A = np.vstack((relaxed_A, new_constraint))
relaxed_b = np.append(relaxed_b, np.inf)
def get_bounds():
return [(0, None), (0, None)]
def get_c():
return np.array([40, 90])
def get_A():
return np.array([[-9, -7], [-7, -20]])
def get_b():
return np.array([-56, -70])
if __name__ == '__main__':
bounds = get_bounds()
relaxed_A = get_A()
relaxed_b = get_b()
integer_cutting_plane(get_c(), relaxed_A, relaxed_b, bounds)
```
在这个代码中,我们使用pulp库来定义和解决整数线性规划问题。我们首先创建一个线性规划模型`lp_model`,然后定义决策变量、目标函数和约束条件。在每次迭代中,我们调用`lp_model.solve()`来求解整数线性规划问题,并根据求解结果判断是否找到了整数可行解。
希望这次的代码能够满足你的需求。如果有任何进一步的问题,请随时提问。
阅读全文