p= acorr_ljungbox(pred_error, lags = lagnum)
时间: 2023-12-06 09:44:01 浏览: 108
这行代码使用了Python中的statsmodels库中的acorr_ljungbox函数来进行Ljung-Box检验。该函数的作用是进行时间序列的自相关检验,其中pred_error表示预测误差序列,lags表示要检验的滞后阶数。检验结果会返回两个数组,第一个数组为Q值,第二个数组为P值,用于判断序列是否具有自相关性。
相关问题
#-*- coding: utf-8 -*- #模型检验 import pandas as pd #参数初始化 discfile = 'C:\\Users\\Administrator\\Desktop\\chapter11\\demo\\data\\discdata_processed.xls' lagnum = 12 #滞后阶数 data = pd.read_excel(discfile, index_col = 'COLLECTTIME') data = data.iloc[: len(data)-5] #不使用最后5个数据 xdata = data['CWXT_DB:184:D:\\'] from statsmodels.tsa.arima.model import ARIMA #建立ARIMA(0,1,1)模型 arima = ARIMA(xdata, order=(0, 1, 1)).fit() #建立并训练模型 xdata_pred = arima.predict(typ = 'levels') #预测 pred_error = (xdata_pred - xdata).dropna() #计算残差 print("预测值",xdata_pred) print("计算残差:",pred_error) from statsmodels.stats.diagnostic import acorr_ljungbox #白噪声检验 p= acorr_ljungbox(pred_error, lags = lagnum) print("p的值为:",p) m = p.iloc[:,1].sum() print("m的值为:",m) h = (m < 0.05) #p值小于0.05,认为是非白噪声。 if h > 0: print(u'模型ARIMA(0,1,1)不符合白噪声检验') else: print(u'模型ARIMA(0,1,1)符合白噪声检验')程序解读
这段程序的功能是进行ARIMA模型检验,包括建立ARIMA模型、预测、计算残差、白噪声检验,判断模型是否符合白噪声检验。
程序的具体步骤如下:
1. 导入需要的库,包括pandas、ARIMA、acorr_ljungbox等。
2. 定义数据文件路径和滞后阶数。
3. 读取数据文件,并删除最后5个数据,保留前面的数据。
4. 选取需要分析的数据列,即'CWXT_DB:184:D:\\'。
5. 建立ARIMA(0,1,1)模型,并训练模型。
6. 利用训练好的模型进行预测,并计算预测值和残差。
7. 进行白噪声检验,计算p值。
8. 对p值进行求和,得到m值。
9. 判断m值是否小于0.05,若是,则模型不符合白噪声检验,否则符合。
10. 打印输出检验结果。
需要注意的是,程序中的数据文件路径和数据列名需要根据实际情况进行修改。另外,程序中的ARIMA模型阶数和白噪声检验的滞后阶数也可以根据实际需求进行修改。
brier <- brier_efron(y_train_true = y_dat, y_train_pred = y_dat_pred, y_newdata = y_val, y_newdata_pred = y_val_pred, times = c(1:10)) brier$bs改成python
在Python中,你可以使用上面提供的`brier_efron`函数来计算Brier分数。以下是将R代码转换为Python代码的版本:
```python
import pandas as pd
import numpy as np
from lifelines.utils import concordance_index
def brier_efron(y_train_true, y_train_pred, y_newdata, y_newdata_pred, times):
baseline = base_efron(y_train_true, y_train_pred)
y_newdata = pd.DataFrame(y_newdata, columns=["time", "event"])
y_newdata = y_newdata.sort_values(by="time")
y_newdata_pred = y_newdata_pred[y_newdata.index]
Y_x = np.zeros((len(y_newdata), len(times)))
for i, x in enumerate(times):
Y_x[:, i] = np.where(y_newdata["time"] > x, 1, 0)
kmf = KaplanMeierFitter().fit(y_newdata["time"], event_observed=y_newdata["event"])
G_t = kmf.survival_function_at_times(times).values.flatten()
G_x = kmf.predict(y_newdata["time"]).values.flatten()
W_x = np.zeros((len(y_newdata), len(times)))
for t in range(len(times)):
W_x[:, t] = (1 - Y_x[:, t]) * y_newdata["event"] / G_x + Y_x[:, t] / G_t[t]
Lambda_t = [baseline.baseline_hazard_[baseline.baseline_survival_.index(baseline.baseline_survival_.index <= x)].sum() for x in times]
S_x = np.exp(-np.exp(y_newdata_pred) @ np.array(Lambda_t))
BS_t = [np.mean(W_x[:, x] * (Y_x[:, x] - S_x[:, x])**2) for x in range(len(times))]
return pd.DataFrame({"time": times, "bs": BS_t})
# 使用示例
y_dat = [...] # y_train_true的值
y_dat_pred = [...] # y_train_pred的值
y_val = [...] # y_newdata的值
y_val_pred = [...] # y_newdata_pred的值
times = np.arange(1, 11)
brier_result = brier_efron(y_train_true=y_dat, y_train_pred=y_dat_pred, y_newdata=y_val, y_newdata_pred=y_val_pred, times=times)
print(brier_result)
```
请注意替换`[...]`部分的数据为实际的数据值。`brier_result`将是一个包含时间和Brier分数的数据框。你可以根据需要对结果进行进一步操作。
阅读全文