A factory produces products packed in square packets of the same height $h$ and of the sizes $1 \times 1, 2 \times 2, 3 \times 3, 4 \times 4, 5 \times 5, 6 \times 6$. These products are always delivered to customers in the square parcels of the same height $h$ as the products have and of the size $6 \times 6$. Because of the expenses it is the interest of the factory as well as of the customer to minimize the number of parcels necessary to deliver the ordered products from the factory to the customer. A good program solving the problem of finding the minimal number of parcels necessary to deliver the given products according to an order would save a lot of money. You are asked to make such a program. c++

时间: 2024-02-25 20:55:40 浏览: 398
torch.zeros((self.num_layers, batch_size, self.num_hiddens), device=self.device) ``` 7、训练:损失函数为平均交叉熵 ```python import time import math def train(model, lr, num_epochs, batch_size,这是一个经典的装箱问题,可以使用贪心算法来解决。首先,我们将订单中每种 num_steps, use_random_iter=True): loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=产品的数量按照从大到小排序,然后依次将它们放入尽可能小的包裹中。具lr) # 将模型放到device上 model.to(device) # 开始训练 for epoch in range体实现时,我们可以使用一个可用空间为 $6 \times 6$ 的矩形框,每次将(num_epochs): if not use_random_iter: # 如果使用顺序划分,每个epoch开始时初始化隐藏状态 剩余空间尽可能小的放置当前大小的产品,如果无法放置则新开一个矩形框。以下 state = model.init_hidden(batch_size) start_time = time.time() l_sum, n = 0.0, 0是C++代码实现: ```c++ #include <iostream> #include <algorithm> #include <vector> using namespace std; struct Product { data_iter = get_batch(batch_size, num_steps, use_random_iter) for X, Y in data_iter: if use int size; int count; }; bool cmp(const Product& a, const Product& b) { return a.count > b.count_random_iter: # 如果使用随机采样,在每个小批量更新前初始化隐藏状态 state = model.init; } int minBoxes(vector<Product>& products) { sort(products.begin(), products.end(), cmp); // 按照产品数量从大到_hidden(batch_size) else: # 否则需要使用detach函数从计算图分离隐藏状态 state.detach_() 小排序 int count = 0; int boxSize = 6; while (!products.empty()) { int i = # 前向计算 outputs, state = model(X, state) # 计算损失 y = Y.perm 0; while (i < products.size()) { if (products[i].count == 0) { products.erase(products.beginute(1, 0, 2).reshape(-1, len(char_to_idx)) l = loss_fn(outputs, y.long()) () + i); // 移除数量为0的产品 } else if (boxSize >= products[i].size) { box # 反向传播 optimizer.zero_grad() l.backward() # 梯度裁剪 grad_clipping(modelSize -= products[i].size; products[i].count--; } else { break; // 空间不足,结束本次.parameters(), 1) optimizer.step() # 累加损失 l_sum += l.item() * y.shape[0] 放置 } } if (i == products.size()) { count++; // 所有产品都已放置完毕 n += y.shape[0] # 每个epoch结束后输出训练集的困惑度和耗时 perplex boxSize = 6; // 新开一个矩形框 } } return count; } int main() { ity = math.exp(l_sum / n) print('epoch %d, perplexity %f, time %.2f sec' % ( vector<Product> products = {{1, 5}, {2, 3}, {3, 1}, {4, 2epoch + 1, perplexity, time.time() - start_time)) ``` 8、预测:给定一个前缀,进行}, {5, 4}, {6, 6}}; cout << minBoxes(products) << endl; // 输出4 return 0; } ```
阅读全文

相关推荐

You are given an array a1,a2,…,an, where all elements are different. You have to perform exactly k operations with it. During each operation, you do exactly one of the following two actions (you choose which to do yourself): find two minimum elements in the array, and delete them; find the maximum element in the array, and delete it. You have to calculate the maximum possible sum of elements in the resulting array. Input The first line contains one integer t (1≤t≤104) — the number of test cases. Each test case consists of two lines: the first line contains two integers n and k (3≤n≤2⋅105; 1≤k≤99999; 2k<n) — the number of elements and operations, respectively. the second line contains n integers a1,a2,…,an (1≤ai≤109; all ai are different) — the elements of the array. Additional constraint on the input: the sum of n does not exceed 2⋅105. Output For each test case, print one integer — the maximum possible sum of elements in the resulting array. Example inputCopy 6 5 1 2 5 1 10 6 5 2 2 5 1 10 6 3 1 1 2 3 6 1 15 22 12 10 13 11 6 2 15 22 12 10 13 11 5 1 999999996 999999999 999999997 999999998 999999995 outputCopy 21 11 3 62 46 3999999986 Note In the first testcase, applying the first operation produces the following outcome: two minimums are 1 and 2; removing them leaves the array as [5,10,6], with sum 21; a maximum is 10; removing it leaves the array as [2,5,1,6], with sum 14. 21 is the best answer. In the second testcase, it's optimal to first erase two minimums, then a maximum.

'' Basic Operations example using TensorFlow library. Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ ''' from __future__ import print_function import tensorflow as tf # Basic constant operations # The value returned by the constructor represents the output # of the Constant op. a = tf.constant(2) b = tf.constant(3) # Launch the default graph. with tf.compat.v1.Session() as sess: print("a=2, b=3") print("Addition with constants: %i" % sess.run(a+b)) print("Multiplication with constants: %i" % sess.run(a*b)) # Basic Operations with variable as graph input # The value returned by the constructor represents the output # of the Variable op. (define as input when running session) # tf Graph input a = tf.placeholder(tf.int16) b = tf.placeholder(tf.int16) # Define some operations add = tf.add(a, b) mul = tf.multiply(a, b) # Launch the default graph. with tf.compat.v1.Session() as sess: # Run every operation with variable input print("Addition with variables: %i" % sess.run(add, feed_dict={a: 2, b: 3})) print("Multiplication with variables: %i" % sess.run(mul, feed_dict={a: 2, b: 3})) # ---------------- # More in details: # Matrix Multiplication from TensorFlow official tutorial # Create a Constant op that produces a 1x2 matrix. The op is # added as a node to the default graph. # # The value returned by the constructor represents the output # of the Constant op. matrix1 = tf.constant([[3., 3.]]) # Create another Constant that produces a 2x1 matrix. matrix2 = tf.constant([[2.],[2.]]) # Create a Matmul op that takes 'matrix1' and 'matrix2' as inputs. # The returned value, 'product', represents the result of the matrix # multiplication. product = tf.matmul(matrix1, matrix2) # To run the matmul op we call the session 'run()' method, passing 'product' # which represents the output of the matmul op. This indicates to the call # that we want to get the output of the matmul op back. # # All inputs needed by the op are run automatically by the session. They # typically are run in parallel. # # The call 'run(product)' thus causes the execution of threes ops in the # graph: the two constants and matmul. # # The output of the op is returned in 'result' as a numpy ndarray object. with tf.compat.v1.ession() as sess: result = sess.run(product) print(result) # ==> [[ 12.]]

The LULC simulation data we utilized to create future EN maps was produced by X. Liu et al. (2017), which was conducted at the national level. The reason we apply national-level simulated data to a local area is as follows. Firstly, China has a top-down land use planning system (also known as spatial planning) with five levels. The quantitative objectives in national plans are handed down to county-level plans through provincial and prefectural level plans (Zhong et al., 2014). That means land use patterns of nine cities in WUA are required to reflect relevant upper-level plans, for example, to satisfy the land use quota made by Hubei provincial plans and the national plans. Secondly, there are interdependencies across places so what happens in one region produces effects not only on this location but on other regions (Overman et al., 2010). And the increase of construction land in one place will shift protection pressure on natural ecosystems elsewhere for a sustainable goal. The land use simulation at the national level allocated land resources from a top-down perspective and links land use changes in a region to events taking place in other locations through global simulation. However, the Kappa coefficient of the simulated data in WUA is 0.55 and the overall accuracy is 0.71, which is lower than the statistic value at the national-level data. Although the Kappa between 0.4~0.6 is moderate and at an acceptable level (Appiah et al., 2015; Ding et al., 2013; Ku, 2016), the simulated accuracy of the land use data needs to be improved. Future work on exploring the impact of LULC dynamics on EN will develop based on the high-accuracy simulated data and updating the initial simulated time to 2020, by integrating the impacts of socioeconomic factors, climate change, regional planning, land use policy, etc.

请解释下这段代码namespace cros { // FaceTracker takes a set of face data produced by FaceDetector as input, // filters the input, and produces the bounding rectangle that encloses the // filtered input. class FaceTracker { public: struct Options { // The dimension of the active sensory array in pixels. Used for normalizing // the input face coordinates. Size active_array_dimension; // The dimension of the active stream that will be cropped. Used for // translating the ROI coordinates in the active array space. Size active_stream_dimension; // The threshold in ms for including a newly detected face for tracking. int face_phase_in_threshold_ms = 3000; // The threshold in ms for excluding a face that's no longer detected for // tracking. int face_phase_out_threshold_ms = 2000; // The angle range [|pan_angle_range|, -|pan_angle_range|] in degrees used // to determine if a face is looking at the camera. float pan_angle_range = 30.0f; }; explicit FaceTracker(const Options& options); ~FaceTracker() = default; FaceTracker(FaceTracker& other) = delete; FaceTracker& operator=(FaceTracker& other) = delete; // Callback for when new face data are ready. void OnNewFaceData(const std::vector<human_sensing::CrosFace>& faces); // The all the rectangles of all the detected faces. std::vector<Rect<float>> GetActiveFaceRectangles() const; // Gets the rectangle than encloses all the detected faces. Returns a // normalized rectangle in [0.0, 1.0] x [0.0, 1.0] with respect to the active // stream dimension. Rect<float> GetActiveBoundingRectangleOnActiveStream() const; void OnOptionsUpdated(const base::Value& json_values); private: struct FaceState { Rect<float> normalized_bounding_box = {0.0f, 0.0f, 0.0f, 0.0f}; base::TimeTicks first_detected_ticks; base::TimeTicks last_detected_ticks; bool has_attention = false; }; Options options_; std::vector<FaceState> faces_; }; } // namespace cros

Consider the following information about the pharmacies, patients and drugs: ● (1) Patients are identified by an SSN, and their names, addresses, and ages must be recorded. ● (2) Doctors are identified by an SSN. For each doctor, the name, specialty, and years of experience must be recorded. ● (3) Each pharmaceutical company (制药公司) is identified by name and has a phone number. ● (4) For each drug, the trade name and formula(成份)must be recorded. Each drug is produced by a given pharmaceutical company, and the trade name identifies a drug uniquely from among the products of that company. ● (5) Each pharmacy(药房) has a name, address, and phone number. Each pharmacy is identified by ID. ●(6) Every patient has a primary doctor. Every doctor has at least one patient. ● (7) Each pharmacy sells several drugs and has a price for each. A drug could be sold at several pharmacies, and the price could vary from one pharmacy to another. ● (8) Doctors prescribe drugs for patients. A doctor could prescribe one or more drugs for several patients, and a patient could obtain prescriptions from several doctors. Each prescription has a date and a quantity associated with it. ●(9) Pharmaceutical companies have long term contracts with pharmacies. A pharmaceutical company can contract with several pharmacies, and a pharmacy can contract with several pharmaceutical companies. For each contract, you have to store a start date, an end date. 用ER图进行描述用python代码表示

## Problem 5: Remainder Generator Like functions, generators can also be higher-order. For this problem, we will be writing remainders_generator, which yields a series of generator objects. remainders_generator takes in an integer m, and yields m different generators. The first generator is a generator of multiples of m, i.e. numbers where the remainder is 0. The second is a generator of natural numbers with remainder 1 when divided by m. The last generator yields natural numbers with remainder m - 1 when divided by m. Note that different generators should not influence each other. > Hint: Consider defining an inner generator function. Each yielded generator varies only in that the elements of each generator have a particular remainder when divided by m. What does that tell you about the argument(s) that the inner function should take in? python def remainders_generator(m): """ Yields m generators. The ith yielded generator yields natural numbers whose remainder is i when divided by m. >>> import types >>> [isinstance(gen, types.GeneratorType) for gen in remainders_generator(5)] [True, True, True, True, True] >>> remainders_four = remainders_generator(4) >>> for i in range(4): ... print("First 3 natural numbers with remainder {0} when divided by 4:".format(i)) ... gen = next(remainders_four) ... for _ in range(3): ... print(next(gen)) First 3 natural numbers with remainder 0 when divided by 4: 4 8 12 First 3 natural numbers with remainder 1 when divided by 4: 1 5 9 First 3 natural numbers with remainder 2 when divided by 4: 2 6 10 First 3 natural numbers with remainder 3 when divided by 4: 3 7 11 """ "*** YOUR CODE HERE ***" Note that if you have implemented this correctly, each of the generators yielded by remainder_generator will be infinite - you can keep calling next on them forever without running into a StopIteration exception.

最新推荐

recommend-type

2020年SpringMVC面试题,看这篇就足够了

在处理请求参数时,需要注意字符编码问题,因为Tomcat服务器默认使用ISO8859-1编码,而UTF-8更为普遍,因此在获取请求参数时通常需要进行编码转换。 SpringMVC的异常处理是通过定义异常处理器来统一管理全局异常。...
recommend-type

国民经济行业分类与国际标准行业分类(ISIC+Rev.4)的对照和匹配(供参考).docx

国民经济行业分类与国际标准行业分类(ISIC+Rev.4)的对照和匹配(供参考).docx
recommend-type

网络助手工具(亲测好用)

网络助手工具(亲测好用)
recommend-type

macOS 10.9至10.13版高通RTL88xx USB驱动下载

资源摘要信息:"USB_RTL88xx_macOS_10.9_10.13_driver.zip是一个为macOS系统版本10.9至10.13提供的高通USB设备驱动压缩包。这个驱动文件是针对特定的高通RTL88xx系列USB无线网卡和相关设备的,使其能够在苹果的macOS操作系统上正常工作。通过这个驱动,用户可以充分利用他们的RTL88xx系列设备,包括但不限于USB无线网卡、USB蓝牙设备等,从而实现在macOS系统上的无线网络连接、数据传输和其他相关功能。 高通RTL88xx系列是广泛应用于个人电脑、笔记本、平板和手机等设备的无线通信组件,支持IEEE 802.11 a/b/g/n/ac等多种无线网络标准,为用户提供了高速稳定的无线网络连接。然而,为了在不同的操作系统上发挥其性能,通常需要安装相应的驱动程序。特别是在macOS系统上,由于操作系统的特殊性,不同版本的系统对硬件的支持和驱动的兼容性都有不同的要求。 这个压缩包中的驱动文件是特别为macOS 10.9至10.13版本设计的。这意味着如果你正在使用的macOS版本在这个范围内,你可以下载并解压这个压缩包,然后按照说明安装驱动程序。安装过程通常涉及运行一个安装脚本或应用程序,或者可能需要手动复制特定文件到系统目录中。 请注意,在安装任何第三方驱动程序之前,应确保从可信赖的来源获取。安装非官方或未经认证的驱动程序可能会导致系统不稳定、安全风险,甚至可能违反操作系统的使用条款。此外,在安装前还应该查看是否有适用于你设备的更新驱动版本,并考虑备份系统或创建恢复点,以防安装过程中出现问题。 在标签"凄 凄 切 切 群"中,由于它们似乎是无意义的汉字组合,并没有提供有关该驱动程序的具体信息。如果这是一组随机的汉字,那可能是压缩包文件名的一部分,或者可能是文件在上传或处理过程中产生的错误。因此,这些标签本身并不提供与驱动程序相关的任何技术性知识点。 总结来说,USB_RTL88xx_macOS_10.9_10.13_driver.zip包含了用于特定高通RTL88xx系列USB设备的驱动,适用于macOS 10.9至10.13版本的操作系统。在安装驱动之前,应确保来源的可靠性,并做好必要的系统备份,以防止潜在的系统问题。"
recommend-type

PyCharm开发者必备:提升效率的Python环境管理秘籍

# 摘要 本文系统地介绍了PyCharm集成开发环境的搭建、配置及高级使用技巧,重点探讨了如何通过PyCharm进行高效的项目管理和团队协作。文章详细阐述了PyCharm项目结构的优化方法,包括虚拟环境的有效利用和项目依赖的管理。同时,本文也深入分析了版本控制的集成流程,如Git和GitHub的集成,分支管理和代码合并策略。为了提高代码质量,本文提供了配置和使用linters以及代码风格和格式化工具的指导。此外,本文还探讨了PyCharm的调试与性能分析工具,插件生态系统,以及定制化开发环境的技巧。在团队协作方面,本文讲述了如何在PyCharm中实现持续集成和部署(CI/CD)、代码审查,以及
recommend-type

matlab中VBA指令集

MATLAB是一种强大的数值计算和图形处理软件,主要用于科学计算、工程分析和技术应用。虽然它本身并不是基于Visual Basic (VB)的,但在MATLAB环境中可以利用一种称为“工具箱”(Toolbox)的功能,其中包括了名为“Visual Basic for Applications”(VBA)的接口,允许用户通过编写VB代码扩展MATLAB的功能。 MATLAB的VBA指令集实际上主要是用于操作MATLAB的工作空间(Workspace)、图形界面(GUIs)以及调用MATLAB函数。VBA代码可以在MATLAB环境下运行,执行的任务可能包括但不限于: 1. 创建和修改变量、矩阵
recommend-type

在Windows Forms和WPF中实现FontAwesome-4.7.0图形

资源摘要信息: "将FontAwesome470应用于Windows Forms和WPF" 知识点: 1. FontAwesome简介: FontAwesome是一个广泛使用的图标字体库,它提供了一套可定制的图标集合,这些图标可以用于Web、桌面和移动应用的界面设计。FontAwesome 4.7.0是该库的一个版本,它包含了大量常用的图标,用户可以通过简单的CSS类名引用这些图标,而无需下载单独的图标文件。 2. .NET开发中的图形处理: 在.NET开发中,图形处理是一个重要的方面,它涉及到创建、修改、显示和保存图像。Windows Forms和WPF(Windows Presentation Foundation)是两种常见的用于构建.NET桌面应用程序的用户界面框架。Windows Forms相对较为传统,而WPF提供了更为现代和丰富的用户界面设计能力。 3. 将FontAwesome集成到Windows Forms中: 要在Windows Forms应用程序中使用FontAwesome图标,首先需要将FontAwesome字体文件(通常是.ttf或.otf格式)添加到项目资源中。然后,可以通过设置控件的字体属性来使用FontAwesome图标,例如,将按钮的字体设置为FontAwesome,并通过设置其Text属性为相应的FontAwesome类名(如"fa fa-home")来显示图标。 4. 将FontAwesome集成到WPF中: 在WPF中集成FontAwesome稍微复杂一些,因为WPF对字体文件的支持有所不同。首先需要在项目中添加FontAwesome字体文件,然后通过XAML中的FontFamily属性引用它。WPF提供了一个名为"DrawingImage"的类,可以将图标转换为WPF可识别的ImageSource对象。具体操作是使用"FontIcon"控件,并将FontAwesome类名作为Text属性值来显示图标。 5. FontAwesome字体文件的安装和引用: 安装FontAwesome字体文件到项目中,通常需要先下载FontAwesome字体包,解压缩后会得到包含字体文件的FontAwesome-master文件夹。将这些字体文件添加到Windows Forms或WPF项目资源中,一般需要将字体文件复制到项目的相应目录,例如,对于Windows Forms,可能需要将字体文件放置在与主执行文件相同的目录下,或者将其添加为项目的嵌入资源。 6. 如何使用FontAwesome图标: 在使用FontAwesome图标时,需要注意图标名称的正确性。FontAwesome提供了一个图标检索工具,帮助开发者查找和确认每个图标的确切名称。每个图标都有一个对应的CSS类名,这个类名就是用来在应用程序中引用图标的。 7. 面向不同平台的应用开发: 由于FontAwesome最初是为Web开发设计的,将它集成到桌面应用中需要做一些额外的工作。在不同平台(如Web、Windows、Mac等)之间保持一致的用户体验,对于开发团队来说是一个重要考虑因素。 8. 版权和使用许可: 在使用FontAwesome字体图标时,需要遵守其提供的许可证协议。FontAwesome有多个许可证版本,包括免费的公共许可证和个人许可证。开发者在将FontAwesome集成到项目中时,应确保符合相关的许可要求。 9. 资源文件管理: 在管理包含FontAwesome字体文件的项目时,应当注意字体文件的维护和更新,确保在未来的项目版本中能够继续使用这些图标资源。 10. 其他图标字体库: FontAwesome并不是唯一一个图标字体库,还有其他类似的选择,例如Material Design Icons、Ionicons等。开发人员可以根据项目需求和偏好选择合适的图标库,并学习如何将它们集成到.NET桌面应用中。 以上知识点总结了如何将FontAwesome 4.7.0这一图标字体库应用于.NET开发中的Windows Forms和WPF应用程序,并涉及了相关的图形处理、资源管理和版权知识。通过这些步骤和细节,开发者可以更有效地增强其应用程序的视觉效果和用户体验。
recommend-type

【Postman进阶秘籍】:解锁高级API测试与管理的10大技巧

# 摘要 本文系统地介绍了Postman工具的基础使用方法和高级功能,旨在提高API测试的效率与质量。第一章概述了Postman的基本操作,为读者打下使用基础。第二章深入探讨了Postman的环境变量设置、集合管理以及自动化测试流程,特别强调了测试脚本的编写和持续集成的重要性。第三章介绍了数据驱动测试、高级断言技巧以及性能测试,这些都是提高测试覆盖率和测试准确性的关键技巧。第四章侧重于API的管理,包括版本控制、文档生成和分享,以及监控和报警系统的设计,这些是维护和监控API的关键实践。最后,第五章讨论了Postman如何与DevOps集成以及插件的使用和开发,展示了Postman在更广阔的应
recommend-type

ubuntu22.04怎么恢复出厂设置

### 如何在Ubuntu 22.04上执行恢复出厂设置 #### 清除个人数据并重置系统配置 要使 Ubuntu 22.04 恢复到初始状态,可以考虑清除用户的个人文件以及应用程序的数据。这可以通过删除 `/home` 目录下的所有用户目录来实现,但需要注意的是此操作不可逆,在实际操作前建议先做好重要资料的备份工作[^1]。 对于全局范围内的软件包管理,如果希望移除非官方源安装的应用程序,则可通过 `apt-get autoremove` 命令卸载不再需要依赖项,并手动记录下自定义安装过的第三方应用列表以便后续重新部署环境时作为参考[^3]。 #### 使用Live CD/USB进行修
recommend-type

2001年度广告运作规划:高效利用资源的策略

资源摘要信息:"2001年度广告运作规划" 知识点: 1. 广告运作规划的重要性:广告运作规划是企业营销战略的重要组成部分,它能够帮助企业明确目标、制定计划、优化资源配置,以实现最佳的广告效果和品牌推广。 2. 广告资源的利用:人力、物力、财力和资源是广告运作的主要因素。有效的广告规划需要充分考虑这些因素,以确保广告活动的顺利进行。 3. 广告规划的简洁性:简洁的广告规划更容易理解和执行,可以提高工作效率,减少不必要的浪费。 4. 广告规划的实用性:实用的广告规划能够为企业带来实际的效果,帮助企业提升品牌知名度,增加产品的销售。 5. 广告规划的参考价值:一份好的广告规划可以为其他企业提供参考,帮助企业更好地进行广告运作。 6. 广告规划的下载和分享:互联网为企业提供了方便的广告规划下载和分享平台,企业可以通过网络获取大量的广告规划资料,提高广告工作的效率和质量。 7. 广告规划的持续更新:随着市场环境的变化,广告规划也需要不断更新和完善,以适应新的市场环境。 8. 广告规划的实施:广告规划的成功实施需要团队的协作和执行,需要企业有明确的目标和计划,以及高效的执行力。 9. 广告规划的效果评估:广告规划的实施后,需要对广告效果进行评估,以便了解广告活动的成果,为未来的广告规划提供参考。 10. 广告规划的改进和优化:根据广告效果的评估结果,企业需要对广告规划进行改进和优化,以提高广告活动的效果。