A factory produces products packed in square packets of the same height $h$ and of the sizes $1 \times 1, 2 \times 2, 3 \times 3, 4 \times 4, 5 \times 5, 6 \times 6$. These products are always delivered to customers in the square parcels of the same height $h$ as the products have and of the size $6 \times 6$. Because of the expenses it is the interest of the factory as well as of the customer to minimize the number of parcels necessary to deliver the ordered products from the factory to the customer. A good program solving the problem of finding the minimal number of parcels necessary to deliver the given products according to an order would save a lot of money. You are asked to make such a program. c++

时间: 2024-02-25 16:55:40 浏览: 379
torch.zeros((self.num_layers, batch_size, self.num_hiddens), device=self.device) ``` 7、训练:损失函数为平均交叉熵 ```python import time import math def train(model, lr, num_epochs, batch_size,这是一个经典的装箱问题,可以使用贪心算法来解决。首先,我们将订单中每种 num_steps, use_random_iter=True): loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=产品的数量按照从大到小排序,然后依次将它们放入尽可能小的包裹中。具lr) # 将模型放到device上 model.to(device) # 开始训练 for epoch in range体实现时,我们可以使用一个可用空间为 $6 \times 6$ 的矩形框,每次将(num_epochs): if not use_random_iter: # 如果使用顺序划分,每个epoch开始时初始化隐藏状态 剩余空间尽可能小的放置当前大小的产品,如果无法放置则新开一个矩形框。以下 state = model.init_hidden(batch_size) start_time = time.time() l_sum, n = 0.0, 0是C++代码实现: ```c++ #include <iostream> #include <algorithm> #include <vector> using namespace std; struct Product { data_iter = get_batch(batch_size, num_steps, use_random_iter) for X, Y in data_iter: if use int size; int count; }; bool cmp(const Product& a, const Product& b) { return a.count > b.count_random_iter: # 如果使用随机采样,在每个小批量更新前初始化隐藏状态 state = model.init; } int minBoxes(vector<Product>& products) { sort(products.begin(), products.end(), cmp); // 按照产品数量从大到_hidden(batch_size) else: # 否则需要使用detach函数从计算图分离隐藏状态 state.detach_() 小排序 int count = 0; int boxSize = 6; while (!products.empty()) { int i = # 前向计算 outputs, state = model(X, state) # 计算损失 y = Y.perm 0; while (i < products.size()) { if (products[i].count == 0) { products.erase(products.beginute(1, 0, 2).reshape(-1, len(char_to_idx)) l = loss_fn(outputs, y.long()) () + i); // 移除数量为0的产品 } else if (boxSize >= products[i].size) { box # 反向传播 optimizer.zero_grad() l.backward() # 梯度裁剪 grad_clipping(modelSize -= products[i].size; products[i].count--; } else { break; // 空间不足,结束本次.parameters(), 1) optimizer.step() # 累加损失 l_sum += l.item() * y.shape[0] 放置 } } if (i == products.size()) { count++; // 所有产品都已放置完毕 n += y.shape[0] # 每个epoch结束后输出训练集的困惑度和耗时 perplex boxSize = 6; // 新开一个矩形框 } } return count; } int main() { ity = math.exp(l_sum / n) print('epoch %d, perplexity %f, time %.2f sec' % ( vector<Product> products = {{1, 5}, {2, 3}, {3, 1}, {4, 2epoch + 1, perplexity, time.time() - start_time)) ``` 8、预测:给定一个前缀,进行}, {5, 4}, {6, 6}}; cout << minBoxes(products) << endl; // 输出4 return 0; } ```
阅读全文

相关推荐

You are given an array a1,a2,…,an, where all elements are different. You have to perform exactly k operations with it. During each operation, you do exactly one of the following two actions (you choose which to do yourself): find two minimum elements in the array, and delete them; find the maximum element in the array, and delete it. You have to calculate the maximum possible sum of elements in the resulting array. Input The first line contains one integer t (1≤t≤104) — the number of test cases. Each test case consists of two lines: the first line contains two integers n and k (3≤n≤2⋅105; 1≤k≤99999; 2k<n) — the number of elements and operations, respectively. the second line contains n integers a1,a2,…,an (1≤ai≤109; all ai are different) — the elements of the array. Additional constraint on the input: the sum of n does not exceed 2⋅105. Output For each test case, print one integer — the maximum possible sum of elements in the resulting array. Example inputCopy 6 5 1 2 5 1 10 6 5 2 2 5 1 10 6 3 1 1 2 3 6 1 15 22 12 10 13 11 6 2 15 22 12 10 13 11 5 1 999999996 999999999 999999997 999999998 999999995 outputCopy 21 11 3 62 46 3999999986 Note In the first testcase, applying the first operation produces the following outcome: two minimums are 1 and 2; removing them leaves the array as [5,10,6], with sum 21; a maximum is 10; removing it leaves the array as [2,5,1,6], with sum 14. 21 is the best answer. In the second testcase, it's optimal to first erase two minimums, then a maximum.

'' Basic Operations example using TensorFlow library. Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ ''' from __future__ import print_function import tensorflow as tf # Basic constant operations # The value returned by the constructor represents the output # of the Constant op. a = tf.constant(2) b = tf.constant(3) # Launch the default graph. with tf.compat.v1.Session() as sess: print("a=2, b=3") print("Addition with constants: %i" % sess.run(a+b)) print("Multiplication with constants: %i" % sess.run(a*b)) # Basic Operations with variable as graph input # The value returned by the constructor represents the output # of the Variable op. (define as input when running session) # tf Graph input a = tf.placeholder(tf.int16) b = tf.placeholder(tf.int16) # Define some operations add = tf.add(a, b) mul = tf.multiply(a, b) # Launch the default graph. with tf.compat.v1.Session() as sess: # Run every operation with variable input print("Addition with variables: %i" % sess.run(add, feed_dict={a: 2, b: 3})) print("Multiplication with variables: %i" % sess.run(mul, feed_dict={a: 2, b: 3})) # ---------------- # More in details: # Matrix Multiplication from TensorFlow official tutorial # Create a Constant op that produces a 1x2 matrix. The op is # added as a node to the default graph. # # The value returned by the constructor represents the output # of the Constant op. matrix1 = tf.constant([[3., 3.]]) # Create another Constant that produces a 2x1 matrix. matrix2 = tf.constant([[2.],[2.]]) # Create a Matmul op that takes 'matrix1' and 'matrix2' as inputs. # The returned value, 'product', represents the result of the matrix # multiplication. product = tf.matmul(matrix1, matrix2) # To run the matmul op we call the session 'run()' method, passing 'product' # which represents the output of the matmul op. This indicates to the call # that we want to get the output of the matmul op back. # # All inputs needed by the op are run automatically by the session. They # typically are run in parallel. # # The call 'run(product)' thus causes the execution of threes ops in the # graph: the two constants and matmul. # # The output of the op is returned in 'result' as a numpy ndarray object. with tf.compat.v1.ession() as sess: result = sess.run(product) print(result) # ==> [[ 12.]]

The LULC simulation data we utilized to create future EN maps was produced by X. Liu et al. (2017), which was conducted at the national level. The reason we apply national-level simulated data to a local area is as follows. Firstly, China has a top-down land use planning system (also known as spatial planning) with five levels. The quantitative objectives in national plans are handed down to county-level plans through provincial and prefectural level plans (Zhong et al., 2014). That means land use patterns of nine cities in WUA are required to reflect relevant upper-level plans, for example, to satisfy the land use quota made by Hubei provincial plans and the national plans. Secondly, there are interdependencies across places so what happens in one region produces effects not only on this location but on other regions (Overman et al., 2010). And the increase of construction land in one place will shift protection pressure on natural ecosystems elsewhere for a sustainable goal. The land use simulation at the national level allocated land resources from a top-down perspective and links land use changes in a region to events taking place in other locations through global simulation. However, the Kappa coefficient of the simulated data in WUA is 0.55 and the overall accuracy is 0.71, which is lower than the statistic value at the national-level data. Although the Kappa between 0.4~0.6 is moderate and at an acceptable level (Appiah et al., 2015; Ding et al., 2013; Ku, 2016), the simulated accuracy of the land use data needs to be improved. Future work on exploring the impact of LULC dynamics on EN will develop based on the high-accuracy simulated data and updating the initial simulated time to 2020, by integrating the impacts of socioeconomic factors, climate change, regional planning, land use policy, etc.

请解释下这段代码namespace cros { // FaceTracker takes a set of face data produced by FaceDetector as input, // filters the input, and produces the bounding rectangle that encloses the // filtered input. class FaceTracker { public: struct Options { // The dimension of the active sensory array in pixels. Used for normalizing // the input face coordinates. Size active_array_dimension; // The dimension of the active stream that will be cropped. Used for // translating the ROI coordinates in the active array space. Size active_stream_dimension; // The threshold in ms for including a newly detected face for tracking. int face_phase_in_threshold_ms = 3000; // The threshold in ms for excluding a face that's no longer detected for // tracking. int face_phase_out_threshold_ms = 2000; // The angle range [|pan_angle_range|, -|pan_angle_range|] in degrees used // to determine if a face is looking at the camera. float pan_angle_range = 30.0f; }; explicit FaceTracker(const Options& options); ~FaceTracker() = default; FaceTracker(FaceTracker& other) = delete; FaceTracker& operator=(FaceTracker& other) = delete; // Callback for when new face data are ready. void OnNewFaceData(const std::vector<human_sensing::CrosFace>& faces); // The all the rectangles of all the detected faces. std::vector<Rect<float>> GetActiveFaceRectangles() const; // Gets the rectangle than encloses all the detected faces. Returns a // normalized rectangle in [0.0, 1.0] x [0.0, 1.0] with respect to the active // stream dimension. Rect<float> GetActiveBoundingRectangleOnActiveStream() const; void OnOptionsUpdated(const base::Value& json_values); private: struct FaceState { Rect<float> normalized_bounding_box = {0.0f, 0.0f, 0.0f, 0.0f}; base::TimeTicks first_detected_ticks; base::TimeTicks last_detected_ticks; bool has_attention = false; }; Options options_; std::vector<FaceState> faces_; }; } // namespace cros

Consider the following information about the pharmacies, patients and drugs: ● (1) Patients are identified by an SSN, and their names, addresses, and ages must be recorded. ● (2) Doctors are identified by an SSN. For each doctor, the name, specialty, and years of experience must be recorded. ● (3) Each pharmaceutical company (制药公司) is identified by name and has a phone number. ● (4) For each drug, the trade name and formula(成份)must be recorded. Each drug is produced by a given pharmaceutical company, and the trade name identifies a drug uniquely from among the products of that company. ● (5) Each pharmacy(药房) has a name, address, and phone number. Each pharmacy is identified by ID. ●(6) Every patient has a primary doctor. Every doctor has at least one patient. ● (7) Each pharmacy sells several drugs and has a price for each. A drug could be sold at several pharmacies, and the price could vary from one pharmacy to another. ● (8) Doctors prescribe drugs for patients. A doctor could prescribe one or more drugs for several patients, and a patient could obtain prescriptions from several doctors. Each prescription has a date and a quantity associated with it. ●(9) Pharmaceutical companies have long term contracts with pharmacies. A pharmaceutical company can contract with several pharmacies, and a pharmacy can contract with several pharmaceutical companies. For each contract, you have to store a start date, an end date. 用ER图进行描述用python代码表示

## Problem 5: Remainder Generator Like functions, generators can also be higher-order. For this problem, we will be writing remainders_generator, which yields a series of generator objects. remainders_generator takes in an integer m, and yields m different generators. The first generator is a generator of multiples of m, i.e. numbers where the remainder is 0. The second is a generator of natural numbers with remainder 1 when divided by m. The last generator yields natural numbers with remainder m - 1 when divided by m. Note that different generators should not influence each other. > Hint: Consider defining an inner generator function. Each yielded generator varies only in that the elements of each generator have a particular remainder when divided by m. What does that tell you about the argument(s) that the inner function should take in? python def remainders_generator(m): """ Yields m generators. The ith yielded generator yields natural numbers whose remainder is i when divided by m. >>> import types >>> [isinstance(gen, types.GeneratorType) for gen in remainders_generator(5)] [True, True, True, True, True] >>> remainders_four = remainders_generator(4) >>> for i in range(4): ... print("First 3 natural numbers with remainder {0} when divided by 4:".format(i)) ... gen = next(remainders_four) ... for _ in range(3): ... print(next(gen)) First 3 natural numbers with remainder 0 when divided by 4: 4 8 12 First 3 natural numbers with remainder 1 when divided by 4: 1 5 9 First 3 natural numbers with remainder 2 when divided by 4: 2 6 10 First 3 natural numbers with remainder 3 when divided by 4: 3 7 11 """ "*** YOUR CODE HERE ***" Note that if you have implemented this correctly, each of the generators yielded by remainder_generator will be infinite - you can keep calling next on them forever without running into a StopIteration exception.

最新推荐

recommend-type

2020年SpringMVC面试题,看这篇就足够了

在处理请求参数时,需要注意字符编码问题,因为Tomcat服务器默认使用ISO8859-1编码,而UTF-8更为普遍,因此在获取请求参数时通常需要进行编码转换。 SpringMVC的异常处理是通过定义异常处理器来统一管理全局异常。...
recommend-type

给你一个jingqsdfgnvsdljk

给你一个jingqsdfgnvsdljk
recommend-type

MPSK调制解调MATLAB仿真源代码

MPSK调制解调MATLAB仿真源代码,包括调制的实现、解调的实现、运行结果等
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【损失函数与批量梯度下降】:分析批量大小对损失函数影响,优化模型学习路径

![损失函数(Loss Function)](https://img-blog.csdnimg.cn/20190921134848621.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80Mzc3MjUzMw==,size_16,color_FFFFFF,t_70) # 1. 损失函数与批量梯度下降基础 在机器学习和深度学习领域,损失函数和批量梯度下降是核心概念,它们是模型训练过程中的基石。理解它们的基础概念对于构建