请写一段代码使用TCN根据风速、风向、温度、湿度、气压、空气密度数据预测风电场输出功率
时间: 2023-09-27 18:05:49 浏览: 164
很好的问题!以下是Python中使用Temporal Convolutional Network(TCN)进行风电场输出功率预测的代码:
首先,需要安装Keras和TensorFlow:
```
pip install keras
pip install tensorflow
```
接下来,导入必要的库:
```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.layers import Input, Conv1D, Dense, Dropout
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.callbacks import EarlyStopping
```
然后,读取数据集:
```
data = pd.read_csv('your_dataset.csv')
```
这里我们假设数据集包括风速、风向、温度、湿度、气压和空气密度等列,并且最后一列是输出功率。下一步是对数据进行预处理:
```
X = data.iloc[:,:-1].values
y = data.iloc[:,-1].values.reshape(-1,1)
scaler_X = StandardScaler()
X = scaler_X.fit_transform(X)
scaler_y = StandardScaler()
y = scaler_y.fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
```
这里使用了StandardScaler对输入和输出进行标准化,并将数据集分为训练集和测试集。接下来,定义模型的结构:
```
def build_model(input_shape, output_shape):
inp = Input(shape=input_shape, dtype='float32')
x = Conv1D(64, 3, activation='relu')(inp)
x = Dropout(0.2)(x)
x = Conv1D(128, 3, activation='relu')(x)
x = Dropout(0.2)(x)
x = Conv1D(256, 3, activation='relu')(x)
x = Dropout(0.2)(x)
x = Conv1D(128, 3, activation='relu')(x)
x = Dropout(0.2)(x)
x = Conv1D(64, 3, activation='relu')(x)
x = Dropout(0.2)(x)
x = Dense(128, activation='relu')(x)
x = Dropout(0.2)(x)
x = Dense(64, activation='relu')(x)
x = Dropout(0.2)(x)
out = Dense(output_shape, activation='linear')(x)
model = Model(inp, out)
optimizer = Adam(lr=0.001)
model.compile(loss='mse', optimizer=optimizer)
return model
```
这里使用了5个卷积层和2个全连接层,每个卷积层后面都有一层Dropout。最后一层是线性激活,用于回归问题。模型的优化器使用Adam,并且损失函数为均方误差。接下来,建立模型并训练:
```
input_shape = X_train.shape[1:]
output_shape = y_train.shape[1]
model = build_model(input_shape, output_shape)
early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1)
model.fit(X_train, y_train, batch_size=32, epochs=100, verbose=2, validation_split=0.2, callbacks=[early_stopping])
y_pred = model.predict(X_test)
```
这里使用了EarlyStopping来避免过拟合。最后,对输出进行反标准化,并计算训练集和测试集上的均方误差:
```
y_train_pred = scaler_y.inverse_transform(model.predict(X_train))
y_test_pred = scaler_y.inverse_transform(y_pred)
mse_train = np.mean(np.square(y_train - y_train_pred))
mse_test = np.mean(np.square(y_test - y_test_pred))
print("Train MSE: {:.6f}".format(mse_train))
print("Test MSE: {:.6f}".format(mse_test))
```
就这样,我们完成了使用TCN进行风电场输出功率预测的代码。
阅读全文