np.arange(0, T, dt)

时间: 2024-03-01 20:41:47 浏览: 77
np.arange(0, T, dt)是一个numpy函数,用于生成一个从0开始,以dt为间隔的等差数列,直到小于T为止。其中,T是数列的上限值,dt是数列的步长。这个函数返回一个包含数列元素的numpy数组。 举个例子,如果我们使用np.arange(0, 10, 2),那么生成的数列将包括0、2、4、6和8这些元素。同样地,如果我们使用np.arange(0, 2*np.pi, np.pi/2.0),那么生成的数列将包括0、np.pi/2.0、np.pi和3*np.pi/2.0这些元素。 另外,和np.arange()类似的还有np.linspace()函数,它的作用是生成一个从起始值到结束值之间的等间隔的数列,可以通过设置endpoint参数来决定是否包含结束值。比如,np.linspace(0, 10, 10, endpoint=False)将生成一个从0到10的数列,包括0但不包括10,总共有10个元素,间隔为1。
相关问题

请为为这个函数作图import numpy as np import matplotlib.pyplot as plt def ricker(f, length, dt): t = np.arange(-length/2,(length-dt)/2, dt) y = (1.0 - 2.0*(np.pi*f*t)**2) * np.exp(-(np.pi*f*t)**2) return t,y i = 0 Frequency = 20 length = 0.128 dt = 0.001# 八层介质 rho = np.array([1.5, 1.8, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2]) v = np.array([1500, 1700, 2000, 2200, 2400, 2600, 2800, 3000]) depth = np.array([0, 50, 100, 150, 200, 250, 300, 350]) Z = rho * v L = (Z[1:] - Z[:-1]) / (Z[1:] + Z[:-1]) t1 = np.arange(0, depth[-1]/v[0]*2, dt) L1 = np.zeros(np.size(t1)) for i in range(1, np.size(depth)): t = depth[i]/v[i-1] + depth[i]/v[i] L1[int(np.round(t/dt))] = L[i-1] t0, w0 = ricker(Frequency, length, dt) syn = np.convolve(L1, w0, 'same')

首先,让我们来理解一下这个函数的作用。 该函数定义了一个 Ricker Wavelet,它是一个常用于地震勘探的信号波形。然后,它使用了一些介质参数(密度、速度、深度)来计算每个介质层之间的反射系数。最后,它将这些反射系数和 Ricker Wavelet 进行卷积,产生地震记录。 为了绘制地震记录,我们可以使用 Matplotlib 库。可以在函数的末尾添加以下代码来绘图: plt.plot(t1, syn) plt.xlabel('Time (s)') plt.ylabel('Amplitude') plt.title('Seismic Record') plt.show() 这将绘制一个时间范围为 0 到深度最大值的地震记录,其中深度由介质速度和每个介质层的深度计算得出。您可以根据需要调整图形的大小和样式。

请为为这个函数作出,ricker子波图、反射系数序列图和合成地震记录图import numpy as np import matplotlib.pyplot as plt def ricker(f, length, dt): t = np.arange(-length/2,(length-dt)/2, dt) y = (1.0 - 2.0*(np.pift)**2) * np.exp(-(np.pift)**2) return t,y i = 0 Frequency = 20 length = 0.128 dt = 0.001# 八层介质 rho = np.array([1.5, 1.8, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2]) v = np.array([1500, 1700, 2000, 2200, 2400, 2600, 2800, 3000]) depth = np.array([0, 50, 100, 150, 200, 250, 300, 350]) Z = rho * v L = (Z[1:] - Z[:-1]) / (Z[1:] + Z[:-1]) t1 = np.arange(0, depth[-1]/v[0]*2, dt) L1 = np.zeros(np.size(t1)) for i in range(1, np.size(depth)): t = depth[i]/v[i-1] + depth[i]/v[i] L1[int(np.round(t/dt))] = L[i-1] t0, w0 = ricker(Frequency, length, dt) syn = np.convolve(L1, w0, 'same')

好的,让我们分别绘制三个图形。 Ricker子波图: ``` t0, w0 = ricker(Frequency, length, dt) plt.plot(t0, w0) plt.xlabel('Time (s)') plt.ylabel('Amplitude') plt.title('Ricker Wavelet') plt.show() ``` 反射系数序列图: ``` plt.plot(L) plt.xlabel('Layer') plt.ylabel('Reflection Coefficient') plt.title('Reflection Coefficient Sequence') plt.show() ``` 合成地震记录图: ``` plt.plot(t1, syn) plt.xlabel('Time (s)') plt.ylabel('Amplitude') plt.title('Synthetic Seismic Record') plt.show() ``` 最后,将这三个图形组合成一个图形,并添加适当的标签和标题,可以使用以下代码: ``` fig, axs = plt.subplots(3, 1, figsize=(8, 10)) # Ricker Wavelet axs[0].plot(t0, w0) axs[0].set_xlabel('Time (s)') axs[0].set_ylabel('Amplitude') axs[0].set_title('Ricker Wavelet') # Reflection Coefficient Sequence axs[1].plot(L) axs[1].set_xlabel('Layer') axs[1].set_ylabel('Reflection Coefficient') axs[1].set_title('Reflection Coefficient Sequence') # Synthetic Seismic Record axs[2].plot(t1, syn) axs[2].set_xlabel('Time (s)') axs[2].set_ylabel('Amplitude') axs[2].set_title('Synthetic Seismic Record') # Adjust spacing between subplots fig.tight_layout() plt.show() ```
阅读全文

相关推荐

import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体 plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题 T = 7.24e-6; # % 信号持续时间 B = 5.8e6; # % 信号带宽 K = B/T; # % 调频率 ratio = 10; # % 过采样率 Fs = ratio*B; # % 采样频率 dt = 1/Fs; # % 采样间隔 N = int(np.ceil(T/dt)); # % 采样点数 t = ((np.arange(N))-N/2)/N*T; # % 时间轴flipud st = np.exp(1j*np.pi*K*t**2); # % 生成信号 st = np.exp(1j*np.pi*K*t**2)+0.75*np.random.randn(N); # % 生成带有高斯噪声的信号 ht = np.exp(-1j*np.pi*K*t**2); # % 匹配滤波器 out = np.fft.fftshift(np.fft.ifft(np.fft.fft(st)*np.fft.fft(ht))); # % 计算循环卷积 # Z = abs(out); # Z = Z/max(Z); # Z = 20*log10(eps+Z); Z = np.abs(out); Z = Z/np.max(Z); Z = 20*np.log10(np.finfo(float).eps+Z); tt = t*1e6; plt.figure(figsize=(10,8))#set(gcf,'Color','w'); plt.subplot(2,2,1) plt.plot(tt,np.real(st)); plt.title('(a)输入阵列信号的实部');plt.ylabel('幅度'); plt.subplot(2,2,2) plt.plot(tt,Z);plt.axis([-1,1,-30,0]); plt.title('(c)压缩后的信号(经扩展)');plt.ylabel('幅度(dB)'); plt.subplot(2,2,3); plt.plot(tt,out); plt.title('(b)压缩后的信号');plt.xlabel('相对于t_{0}时间(\mus)');plt.ylabel('幅度'); plt.subplot(2,2,4); plt.plot(tt,np.angle(out));plt.axis([-1,1,-5,5]); plt.title('(d)压缩后信号的相位(经扩展)');plt.xlabel('相对于t_{0}时间(\mus)');plt.ylabel('相位(弧度)'); plt.tight_layout()改为matlab代码

为我将将第二张图的画图方式改为pcolor,并模拟运行结果# -- coding: utf-8 -- """ Created on Thu Jun 1 17:06:08 2023 @author: Rayquaza """ import numpy as np import matplotlib.pyplot as plt def ricker(f, length, dt): t = np.arange(-length/2,(length-dt)/2, dt) y = (1.0 - 2.0*(np.pi2)(f2)(t2)) * np.exp(-(np.pi2)(f2)(t2)) return t,y Frequency = 20 length = 0.128 dt = 0.001 t0, w0 = ricker(Frequency, length, dt) rho = np.array([1.6, 2.4, 1.8]) v = np.array([2000, 3000, 2200]) x = np.arange(0, 500, 1) t = np.arange(0, 0.3, dt) Z = rho*v d_model = np.zeros((2, 500)) for i in range(500): d_model[0, i] = 200 if i < 50: d_model[1, i] = 200 elif i < 250 and i >= 50: d_model[1, i] = 200 + (i-50) elif i >=250: d_model[1, i] = 400 t1 = np.zeros((2, 500)) t1[0, :] = d_model[0,:] / v[1] for i in range(500): t1[1, i] = (d_model[1, i] - d_model[0, i]) / v[2] + t1[0, i] L = np.zeros(2) for i in range(2): L[i] = (Z[i+1] - Z[i]) / (Z[i+1] + Z[i]) L1 = np.zeros([300, 500]) for i in range(2): for j in range(500): if j < 50: L1[int(np.round(t1[i,j]/dt)),j] = (Z[2]-Z[0]) / (Z[2]+Z[0]) else: L1[int(np.round(t1[i,j]/dt)),j] = L[i] syn = np.zeros((300, 500)) for j in range(500): syn[: , j] = np.convolve(L1[:,j], w0, 'same') fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(18, 9)) axes[0].plot(w0, t0, 'b-') axes[0].xaxis.set_ticks_position('top') axes[0].invert_yaxis() axes[0].set_title("Amplitude", fontsize = 12) axes[0].set_ylabel("Time(s)",fontsize = 12) X, T = np.meshgrid(x, t) c = axes[1].contour(X, T, L1) axes[1].xaxis.set_ticks_position('top') axes[1].invert_yaxis() axes[1].set_title("Reflection Coefficient", fontsize = 12) axes[1].set_ylabel("Eight-Way Travel Time(s)",fontsize = 12) c_map = axes[2].pcolormesh(X, T, syn, cmap='bwr', shading='auto') axes[2].xaxis.set_ticks_position('top') axes[2].invert_yaxis() axes[2].set_xlabel("Amplitude", fontsize = 12) axes[2].set_ylabel("Two-Way Travel Time(s)",fontsize = 12) fig.colorbar(c_map, ax=axes[2]) fig.suptitle('Two-Layer Synthetic Seismogram', fontsize = 18) plt.tight_layout() plt.show()

最新推荐

recommend-type

精细金属掩模板(FMM)行业研究报告 显示技术核心部件FMM材料产业分析与市场应用

精细金属掩模板(FMM)作为OLED蒸镀工艺中的核心消耗部件,负责沉积RGB有机物质形成像素。材料由Frame、Cover等五部分组成,需满足特定热膨胀性能。制作工艺包括蚀刻、电铸等,影响FMM性能。适用于显示技术研究人员、产业分析师,旨在提供FMM材料技术发展、市场规模及产业链结构的深入解析。
recommend-type

【创新未发表】斑马算法ZOA-Kmean-Transformer-LSTM负荷预测Matlab源码 9515期.zip

CSDN海神之光上传的全部代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:Main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2024b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除Main.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 智能优化算法优化Kmean-Transformer-LSTM负荷预测系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化Kmean-Transformer-LSTM负荷预测 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化Kmean-Transformer-LSTM负荷预测 4.4.3 灰狼算法GWO/狼群算法WPA优化Kmean-Transformer-LSTM负荷预测 4.4.4 鲸鱼算法WOA/麻雀算法SSA优化Kmean-Transformer-LSTM负荷预测 4.4.5 萤火虫算法FA/差分算法DE优化Kmean-Transformer-LSTM负荷预测 4.4.6 其他优化算法优化Kmean-Transformer-LSTM负荷预测
recommend-type

j link 修复问题套件

j link 修复问题套件
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈

![【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈](https://community.cloudera.com/t5/image/serverpage/image-id/31614iEBC942A7C6D4A6A1/image-size/large?v=v2&px=999) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. Java内存模型