禁忌搜索算法matlab实现
时间: 2024-02-28 09:50:19 浏览: 143
模拟退火算法及禁忌搜索算法的matlab源程序.zip
5星 · 资源好评率100%
禁忌搜索算法(Tabu Search)是一种启发式搜索算法,用于解决组合优化问题。它通过维护一个禁忌表来避免搜索过程中陷入局部最优解,并通过引入禁忌策略来探索更广泛的解空间。
以下是禁忌搜索算法的一种可能的MATLAB实现:
```matlab
function [bestSolution, bestCost] = tabuSearch(initialSolution, costFunction, tabuListSize, maxIterations)
currentSolution = initialSolution;
bestSolution = currentSolution;
bestCost = costFunction(currentSolution);
tabuList = zeros(tabuListSize, numel(initialSolution));
for iter = 1:maxIterations
neighbors = generateNeighbors(currentSolution);
bestNeighbor = [];
bestNeighborCost = inf;
for i = 1:numel(neighbors)
neighbor = neighbors{i};
neighborCost = costFunction(neighbor);
if ~isTabu(neighbor, tabuList) && neighborCost < bestNeighborCost
bestNeighbor = neighbor;
bestNeighborCost = neighborCost;
end
end
currentSolution = bestNeighbor;
tabuList = updateTabuList(tabuList, currentSolution);
if bestNeighborCost < bestCost
bestSolution = bestNeighbor;
bestCost = bestNeighborCost;
end
end
end
function neighbors = generateNeighbors(solution)
% 生成当前解的邻居解
% 实现略
end
function isTabu = isTabu(solution, tabuList)
% 判断当前解是否在禁忌表中
% 实现略
end
function updatedTabuList = updateTabuList(tabuList, solution)
% 更新禁忌表
% 实现略
end
```
在上述代码中,`initialSolution`是初始解,`costFunction`是评估解的成本函数,`tabuListSize`是禁忌表的大小,`maxIterations`是最大迭代次数。算法通过生成邻居解、判断解是否在禁忌表中以及更新禁忌表来实现禁忌搜索的过程。
请注意,上述代码只是禁忌搜索算法的一种简单实现,具体的实现方式可能因问题而异。你可以根据具体的问题需求进行相应的修改和优化。
阅读全文