装载问题分支限界法c++

时间: 2024-06-22 19:00:26 浏览: 142
装载问题分支限界法(Branch and Bound)是一种用于求解组合优化问题的算法,特别适用于那些具有大量可能解和部分有序结构的搜索空间。在C++中实现装载问题分支限界法,比如旅行商问题(Traveling Salesman Problem, TSP)或车辆路径问题(Vehicle Routing Problem, VRP),通常会涉及以下步骤: 1. **定义问题**:明确装载物品的限制(如车辆容量、重量、体积等)、物品的起始位置以及目标是找到最短路径或最小成本。 2. **状态表示**:使用数组、vector或类似数据结构来表示当前装载状态,记录每个位置的装载情况。 3. **搜索树结构**:创建一个搜索树,根节点代表初始状态,子节点由可能的选择(比如选择一个未装载的物品或改变一个已装载物品的位置)产生。 4. **分支策略**:从每个节点生成一组可行的子节点,通常通过枚举可能的动作来实现。 5. **评估函数**:为每个节点计算一个估价函数,这个函数估计当前状态到最优解的代价,常见的有启发式函数(如欧几里得距离的总和)。 6. **剪枝策略**:利用上界(upper bound)和下界(lower bound)比较,如果发现某个分支不可能优于当前最优解,就提前结束搜索,避免无效探索。 7. **递归调用**:对每个子节点递归地应用分支限界法,直到达到叶子节点或达到预定的停止条件。 8. **回溯**:当找到最优解时,回溯搜索树以获取完整的解决方案路径。
相关问题

分支限界法处理装载问题,直接给c++代码

好的,以下是使用分支限界法处理装载问题的C++代码: ```c++ #include <iostream> #include <queue> #include <algorithm> using namespace std; const int MAXN = 1005; int c, n, w[MAXN]; bool vis[MAXN]; struct Node { int id; int rest; int cost; bool operator < (const Node &rhs) const { return cost > rhs.cost; } }; int dfs(int id, int rest) { if(rest <= 0) return 0; if(id == n + 1) return 0; if(w[id] > rest) return dfs(id + 1, rest); return max(dfs(id + 1, rest), dfs(id + 1, rest - w[id]) + 1); } int bfs() { priority_queue<Node> q; for(int i = 1; i <= n; i++) { q.push({i, c - w[i], w[i]}); } while(!q.empty()) { Node cur = q.top(); q.pop(); if(cur.rest < 0) continue; if(cur.id == n) return cur.cost; vis[cur.id] = true; q.push({cur.id + 1, cur.rest, cur.cost}); q.push({cur.id + 1, cur.rest - w[cur.id + 1], cur.cost + 1}); } return 0; } int main() { cin >> c >> n; for(int i = 1; i <= n; i++) { cin >> w[i]; } int ans = dfs(1, c); // dfs 求解 cout << ans << endl; // bfs 求解 cout << bfs() << endl; return 0; } ``` 其中,dfs函数是使用深度优先搜索求解的方法,bfs函数则使用分支限界法求解,其中用到了一个优先队列来维护搜索状态。两种方法都能够求解出装载问题的最优解。

用分支限界法处理装载问题,直接给c++代码

以下是使用分支限界法处理装载问题的C++代码: ```c++ #include <iostream> #include <queue> #include <algorithm> #include <cstring> using namespace std; // 物品结构体 struct Item { int w; // 物品重量 int id; // 物品编号 }; // 节点结构体 struct Node { int level; // 当前节点所在层数 int profit; // 当前节点的价值 int weight; // 当前节点的重量 bool operator<(const Node& rhs) const { return profit < rhs.profit; // 以价值为优先级 } }; const int MAXN = 100; // 最大物品数量 const int MAXW = 100; // 最大背包容量 int n, W; // 物品数量、背包容量 Item items[MAXN]; // 物品数组 bool used[MAXN]; // 标记物品是否被选中 // 计算上界(即松弛问题的最优解) int upper_bound(int level, int weight, int profit) { int bound = profit; int w = weight; for (int i = level; i < n; i++) { if (w + items[i].w <= W) { w += items[i].w; bound += items[i].id; } else { int remain = W - w; bound += items[i].id * (double)remain / items[i].w; break; } } return bound; } // 分支限界法求解装载问题 int knapsack() { priority_queue<Node> pq; // 优先队列 Node u, v; u.level = 0; u.profit = 0; u.weight = 0; pq.push(u); // 将根节点加入队列 int maxprofit = 0; while (!pq.empty()) { u = pq.top(); pq.pop(); if (u.profit > maxprofit) { maxprofit = u.profit; } if (u.level == n) continue; // 不选当前物品的子节点 v.level = u.level + 1; v.weight = u.weight; v.profit = u.profit; pq.push(v); // 选当前物品的子节点 v.weight = u.weight + items[u.level].w; v.profit = u.profit + items[u.level].id; v.profit += upper_bound(v.level, v.weight, v.profit); // 加上上界 pq.push(v); } return maxprofit; } int main() { cin >> n >> W; for (int i = 0; i < n; i++) { cin >> items[i].w; items[i].id = i + 1; } sort(items, items + n, [](const Item& a, const Item& b){ // 按单位重量价值排序 return a.id * b.w > b.id * a.w; }); memset(used, false, sizeof(used)); cout << knapsack() << endl; return 0; } ``` 注意,这里的 `upper_bound` 函数计算的是松弛问题的最优解,而不是实际问题的最优解。当然,这个上界也可以通过其他方法来计算,比如线性规划等。
阅读全文

相关推荐

cpp
#include #include #include #include using namespace std; ifstream infile; ofstream outfile; class Node { friend int func(int*, int, int, int*); public: int ID; double weight;//物品的重量 }; bool comp1(Node a, Node b) //定义比较规则 { return a.weight > b.weight; } class Load; class bbnode; class Current { friend Load; friend struct Comp2; private: int upweight;//重量上界 int weight;//结点相应的重量 int level;//活结点在子集树中所处的层次 bbnode* ptr;//指向活结点在子集树中相应结点的指针 }; struct Comp2 { bool operator () (Current *x, Current *y) { return x->upweightupweight; } }; class Load { friend int func(int*, int, int, int*); public: int Max0(); private: priority_queue<Current*, vector, Comp2>H;//利用优先队列(最大堆)储存 int limit(int i); void AddLiveNode(int up, int cw, bool ch, int level); bbnode *P;//指向扩展结点的指针 int c;//背包的容量 int n;//物品的数目 int *w;//重量数组 int cw;//当前装载量 int *bestx;//最优解方案数组 }; class bbnode { friend Load; friend int func( int*, int, int, int*); bbnode* parent; bool lchild; }; //结点中有双亲指针以及左儿子标志 int Load::limit(int i) //计算结点所相应重量的上界 { int left,a; left= c - cw;//剩余容量 a = cw; //b是重量上界,初始值为已经得到的重量 while (i <= n && w[i] parent = P; b->lchild = ch; Current* N = new Current; N->upweight = up; N->weight = cw; N->level = level; N->ptr = b; H.push(N); } int Load::Max0() { int i = 1; P = 0; cw = 0; int bestw = 0; int up = limit(1); while (i != n + 1) { int wt = cw + w[i]; //检查当前扩展结点的左儿子结点 if (wt bestw) bestw =wt; AddLiveNode(up,wt, true, i + 1); } up = limit(i + 1); //检查当前扩展结点的右儿子结点 if (up >= bestw)//如果右儿子可行 { AddLiveNode(up,cw, false, i + 1); } Current* N = H.top(); //取队头元素 H.pop(); P = N->ptr; cw = N->weight; up = N->upweight; i = N->level; } bestx = new int[n + 1]; for (int j = n; j > 0; --j) { bestx[j] = P->lchild; P = P->parent; } return cw; } int func(int *w, int c, int n, int *bestx) //调用Max0函数对子集树的优先队列式进行分支限界搜索 { int W = 0; //初始化装载的总质量为0 Node* Q = new Node[n]; for (int i = 0; i < n; ++i) { Q[i].ID = i + 1; Q[i].weight = w[i+1]; W += w[i+1]; } if (W <= c)//如果足够装,全部装入 return W; sort(Q, Q + n, comp1); //首先,将各物品按照重量从大到小进行排序; Load K; K.w = new int[n + 1]; for (int j = 0; j < n; j++) K.w[j + 1] = w[Q[j].ID]; K.cw = 0; K.c = c; K.n = n; int bestp = K.Max0(); for (int k = 0; k < n; k++) { bestx[Q[k].ID] = K.bestx[k + 1]; } delete []Q; delete []K.w; delete []K.bestx; return bestp; } int main() { int*w,*Final; int c,n,i,best; infile.open("input.txt",ios::in); if(!infile) { cerr<<"open error"<>c; infile>>n; w=new int[n+1]; for(i=1;i>w[i]; infile.close(); Final = new int[n+1]; best = func( w, c, n, Final); outfile.open("output.txt",ios::out); if(!outfile) { cerr<<"open error"<<endl; exit(1); } outfile << best << endl; for (int i = 1; i <= n; ++i) { outfile<<Final[i]<<" "; } outfile.close(); return 0; }

最新推荐

recommend-type

装载问题-分支限界算法-java实现

装载问题-分支限界算法-java实现 装载问题 装载问题是一种经典的组合优化问题,目的是在有限的容量内装载尽可能多的物品,以达到最大化总重量或总价值。装载问题有多种变种,包括0/1背包问题、分支限界问题、动态...
recommend-type

装载问题(分支限界法)报告.doc

《装载问题(分支限界法)报告》详细解读 装载问题是一个经典的组合优化问题,它涉及到如何有效地将一组物品分配到有限的资源中,以达到某种优化目标。在这个实验报告中,我们关注的是如何利用分支限界法来解决装载...
recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

【中国银行-2024研报】美国大选结果对我国芯片产业发展的影响和应对建议.pdf

行业研究报告、行业调查报告、研报
recommend-type

RM1135开卡工具B17A

RM1135开卡工具B17A
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。