x1, x2 = torch.split
时间: 2024-05-19 15:10:32 浏览: 84
x1, x2 = torch.split是PyTorch中的一个函数,用于将一个张量按照给定的维度进行分割。具体来说,在代码中,x1, x2 = torch.split(dw_abc, self.dims, dim=1)会将张量dw_abc按照维度1进行分割,分割成两个张量x1和x2。其中x1的形状为(B, C1, H, W),x2的形状为(B, C2, H, W)。这里的C1和C2分别对应着分割后两个张量的通道数。在这个例子中,x1和x2的具体值需要根据输入的张量和参数进行计算才能得到。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>
相关问题
class Partial_conv3(nn.Module): def init(self, dim, n_div, forward): super().init() self.dim_conv3 = dim // n_div self.dim_untouched = dim - self.dim_conv3 self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False) self.global_pool = GlobalAvgPool2d() if forward == 'slicing': self.forward = self.forward_slicing elif forward == 'split_cat': self.forward = self.forward_split_cat else: raise NotImplementedError def forward_slicing(self, x: Tensor) -> Tensor: # only for inference x = x.clone() # !!! Keep the original input intact for the residual connection later x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :]) return x def forward_split_cat(self, x: Tensor) -> Tensor: x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1) x1 = self.global_pool(x1) x1 = self.partial_conv3(x1) x = torch.cat((x1, x2), 1) return x这段代码有什么错误
这段代码并没有明显的语法错误,但是存在一些潜在的问题和需要改进的地方:
1. 类名应该以大写字母开头,应该将 `Partial_conv3` 改为 `PartialConv3`。
2. `super().init()` 应该改为 `super().__init__()`。
3. `self.forward` 方法应该在 `init` 方法中定义,在 `init` 中加入 `self.forward = None`。
4. `forward_split_cat` 方法中,应该先使用 `self.partial_conv3` 对 `x1` 进行卷积操作,再将 `x1` 和 `x2` 进行拼接,即应该将 `x1 = self.partial_conv3(x1)` 放在 `torch.cat((x1, x2), 1)` 之前。
5. `dim` 应该改为 `in_channels`,以更加清晰地表示输入张量的通道数。
6. `forward` 方法的输入参数应该改为 `inputs`,以更加符合命名规范。
以下是修改后的代码:
```
class PartialConv3(nn.Module):
def __init__(self, in_channels, n_div, forward):
super().__init__()
self.dim_conv3 = in_channels // n_div
self.dim_untouched = in_channels - self.dim_conv3
self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)
self.global_pool = GlobalAvgPool2d()
self.forward = None
if forward == 'slicing':
self.forward = self.forward_slicing
elif forward == 'split_cat':
self.forward = self.forward_split_cat
else:
raise NotImplementedError
def forward_slicing(self, inputs: Tensor) -> Tensor:
# only for inference
x = inputs.clone() # !!! Keep the original input intact for the residual connection later
x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])
return x
def forward_split_cat(self, inputs: Tensor) -> Tensor:
x1, x2 = torch.split(inputs, [self.dim_conv3, self.dim_untouched], dim=1)
x1 = self.partial_conv3(x1)
x1 = self.global_pool(x1)
x = torch.cat((x1, x2), 1)
return x
```
class Partial_conv3(nn.Module): def __init__(self, dim, n_div, forward): super().__init__() self.dim_conv3 = dim // n_div self.dim_untouched = dim - self.dim_conv3 self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False) self.global_pool = GlobalAvgPool2d() if forward == 'slicing': self.forward = self.forward_slicing elif forward == 'split_cat': self.forward = self.forward_split_cat else: raise NotImplementedError def forward_slicing(self, x: Tensor) -> Tensor: # only for inference x = x.clone() # !!! Keep the original input intact for the residual connection later x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :]) return x def forward_split_cat(self, x: Tensor) -> Tensor: x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1) x1 = self.partial_conv3(x1) x1 = self.global_pool(x1) x = torch.cat((x1, x2), 1) return x在这段代码中插入全局平均池化做通道增强的模块
你可以在forward_slicing和forward_split_cat的输出结果之前加入一个全局平均池化层进行通道增强,代码如下:
```
class Partial_conv3(nn.Module):
def __init__(self, dim, n_div, forward):
super().__init__()
self.dim_conv3 = dim // n_div
self.dim_untouched = dim - self.dim_conv3
self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)
self.global_pool = GlobalAvgPool2d()
self.channel_enhance = nn.Sequential(
nn.Conv2d(dim, dim, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(dim),
nn.ReLU(inplace=True),
self.global_pool
)
if forward == 'slicing':
self.forward = self.forward_slicing
elif forward == 'split_cat':
self.forward = self.forward_split_cat
else:
raise NotImplementedError
def forward_slicing(self, x: Tensor) -> Tensor:
# only for inference
x = x.clone() # !!! Keep the original input intact for the residual connection later
x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])
x = self.channel_enhance(x)
return x
def forward_split_cat(self, x: Tensor) -> Tensor:
x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)
x1 = self.partial_conv3(x1)
x1 = self.channel_enhance(x1)
x = torch.cat((x1, x2), 1)
return x
```
这里使用了一个nn.Sequential模块,包含了一个1x1的卷积层、BatchNorm层、ReLU激活层和全局平均池化层,对输入的特征图进行通道增强,从而提高模型的性能。在forward_slicing和forward_split_cat的输出结果之前,将输入特征图通过这个通道增强模块之后再输出。
阅读全文
相关推荐
















