return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]

时间: 2024-09-22 16:09:18 浏览: 67
`return _VF.meshgrid(tensors, **kwargs)` 是一个函数,通常在 PyTorch (PyTorch 中的 `VF` 模块,`VF` 可能代表 Variable Functions 或者某种向量化操作的工具) 的上下文中使用。这个函数的主要作用是生成多维坐标网格,常用于处理像卷积神经网络中输入图像的通道、行和列等多维度信息。 参数: - `tensors`: 一个张量或者一系列张量,表示需要生成网格的轴。每个张量对应网格的一个维度。 - `**kwargs`: 可选的关键字参数,可以包含如 ` indexing`(索引类型,默认为 'ij' 即笛卡尔坐标),` sparse` (是否返回稀疏形式的网格,默认 False 等)这样的额外选项。 函数内部会将传入的张量转化为网格形式,这对于计算一些与位置相关的操作(例如卷积核滑动或采样)非常有用。返回的结果通常是形状匹配于输入张量的张量组,每组张量对应一个网格。 例子场景: ```python # 假设有一系列二维张量 [x, y] x = torch.tensor([0, 1, 2]) y = torch.tensor([0, 0, 1]) # 调用 meshgrid 函数 X, Y = _VF.meshgrid([x, y]) # 返回 X,Y 的网格张量 ``` 现在 `X` 和 `Y` 将分别是一个形状为 (3, 3) 的张量,其中每个元素对应原输入张量上的一对坐标值。
相关问题

return _vf.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]

`return _vf.meshgrid(tensors, **kwargs)`是一个函数调用语句,用于生成网格点坐标矩阵。 `_vf.meshgrid`是一个函数,它接受一个或多个张量作为参数,并根据这些张量的维度生成网格点坐标矩阵。这个函数会将每个张量中的元素组合起来,生成一个维度为N的张量列表,其中N是所有张量的维度之和。 参数`tensors`是一个张量对象或张量列表,表示需要生成网格点的坐标。可以传入一个或多个张量。 `**kwargs`是一个关键字参数,表示一些额外的配置选项。这些选项可以用于控制生成的网格点坐标的形状、顺序等。 整个函数调用的结果会被返回。返回值是一个包含网格点坐标的张量列表,每个张量的维度与对应的输入张量相同。网格点坐标的数量等于所有输入张量中元素个数的乘积。 总之,这个函数调用是用于生成网格点坐标矩阵的,可以根据输入的张量生成一个包含网格点坐标的张量列表。

UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at C:\cb\pytorch_1000000000000\work\aten\src\ATen\native\TensorShape.cpp:3491.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]

这个警告是由于你正在使用 `torch.meshgrid` 函数时没有指定索引参数引起的。在将来的版本中,需要指定索引参数,以便在多种情况下正确地使用此函数。为了消除这个警告,你需要在调用 `torch.meshgrid` 函数时指定索引参数。具体来说,你需要将 `indexing` 参数设置为 `'ij'` 或 `'xy'`,以指定使用哪种索引方式。例如: ``` import torch x = torch.tensor([1, 2, 3]) y = torch.tensor([4, 5, 6]) # 指定使用 'ij' 索引方式 xx, yy = torch.meshgrid(x, y, indexing='ij') # 指定使用 'xy' 索引方式 xx, yy = torch.meshgrid(x, y, indexing='xy') ``` 你需要根据你的具体需求选择合适的索引方式,并在调用 `torch.meshgrid` 函数时指定索引参数,以避免这个警告。
阅读全文

相关推荐

File "E:/learning/NEW/code/yolov8/NWPU/yolov8-pytorch-master/train.py", line 548, in <module> fit_one_epoch(model_train, model, ema, yolo_loss, loss_history, eval_callback, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, save_period, save_dir, local_rank) File "E:\learning\NEW\code\yolov8\NWPU\yolov8-pytorch-master\utils\utils_fit.py", line 34, in fit_one_epoch outputs = model_train(images) File "D:\Anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "D:\Anaconda3\envs\pytorch\lib\site-packages\torch\nn\parallel\data_parallel.py", line 166, in forward return self.module(*inputs[0], **kwargs[0]) File "D:\Anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "E:\learning\NEW\code\yolov8\NWPU\yolov8-pytorch-master\nets\yolo.py", line 165, in forward self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5)) File "E:\learning\NEW\code\yolov8\NWPU\yolov8-pytorch-master\utils\utils_bbox.py", line 25, in make_anchors sy,sx = torch.meshgrid(sy, sx, indexing='ij') if TORCH_1_10 else torch.meshgrid(sy, sx) File "D:\Anaconda3\envs\pytorch\lib\site-packages\torch\functional.py", line 463, in meshgrid return _meshgrid(*tensors, indexing=indexing) File "D:\Anaconda3\envs\pytorch\lib\site-packages\torch\functional.py", line 478, in _meshgrid return _VF.meshgrid(tensors, **kwargs,indexing='ij') # type: ignore[attr-defined] TypeError: meshgrid() got multiple values for keyword argument 'indexing'

分析错误信息D:\Anaconda3 2023.03-1\envs\pytorch\lib\site-packages\torch\functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\aten\src\ATen\native\TensorShape.cpp:3484.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] Model Summary: 283 layers, 7063542 parameters, 7063542 gradients, 16.5 GFLOPS Transferred 354/362 items from F:\Desktop\yolov5-5.0\weights\yolov5s.pt Scaled weight_decay = 0.0005 Optimizer groups: 62 .bias, 62 conv.weight, 59 other Traceback (most recent call last): File "F:\Desktop\yolov5-5.0\train.py", line 543, in <module> train(hyp, opt, device, tb_writer) File "F:\Desktop\yolov5-5.0\train.py", line 189, in train dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, File "F:\Desktop\yolov5-5.0\utils\datasets.py", line 63, in create_dataloader dataset = LoadImagesAndLabels(path, imgsz, batch_size, File "F:\Desktop\yolov5-5.0\utils\datasets.py", line 385, in __init__ cache, exists = torch.load(cache_path), True # load File "D:\Anaconda3 2023.03-1\envs\pytorch\lib\site-packages\torch\serialization.py", line 815, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) File "D:\Anaconda3 2023.03-1\envs\pytorch\lib\site-packages\torch\serialization.py", line 1033, in _legacy_load magic_number = pickle_module.load(f, **pickle_load_args) _pickle.UnpicklingError: STACK_GLOBAL requires str Process finished with exit code 1

wandb: Currently logged in as: anony-mouse-584351. Use wandb login --relogin to force relogin wandb: wandb version 0.15.3 is available! To upgrade, please run: wandb: $ pip install wandb --upgrade wandb: Tracking run with wandb version 0.12.21 wandb: Run data is saved locally in /kaggle/working/yolov7/wandb/run-20230601_125414-1jenk8d0 wandb: Run wandb offline to turn off syncing. wandb: Syncing run run12 wandb: ⭐️ View project at https://wandb.ai/anony-mouse-584351/yolov7-tiny?apiKey=323c78e6a061c91ed778f8bd6fc310953f397638 wandb: 🚀 View run at https://wandb.ai/anony-mouse-584351/yolov7-tiny/runs/1jenk8d0?apiKey=323c78e6a061c91ed778f8bd6fc310953f397638 wandb: WARNING Do NOT share these links with anyone. They can be used to claim your runs. /opt/conda/lib/python3.7/site-packages/torch/functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /usr/local/src/pytorch/aten/src/ATen/native/TensorShape.cpp:2227.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] WARNING: Dataset not found, nonexistent paths: ['/kaggle/working/yolov7/noduleyolov1iyolov7pytorch/valid/images'] Traceback (most recent call last): File "yolov7/train.py", line 616, in <module> train(hyp, opt, device, tb_writer) File "yolov7/train.py", line 97, in train check_dataset(data_dict) # check File "/kaggle/working/yolov7/yolov7/utils/general.py", line 173, in check_dataset raise Exception('Dataset not found.') Exception: Dataset not found. wandb: Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing. wandb: wandb: Synced run12: https://wandb.ai/anony-mouse-584351/yolov7-tiny/runs/1jenk8d0?apiKey=323c78e6a061c91ed778f8bd6fc310953f397638 wandb: Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s) wandb: Find logs at: ./wandb/run-20230601_125414-1jenk8d0/logs

最新推荐

recommend-type

com.harmonyos.exception.VpnConnectionException.md

鸿蒙开发中碰到的报错,问题已解决,写个文档记录一下这个问题及解决方案
recommend-type

PDF编辑器+OCR图文转文本,好用,强烈推荐

PDF编辑器+OCR图文转文本,好用,强烈推荐
recommend-type

com.harmonyos4.exception.MultiDeviceConnectionException

鸿蒙开发中碰到的报错,问题已解决,写个文档记录一下这个问题及解决方案
recommend-type

com.harmonyos4.exception.BluetoothDisconnectionException

鸿蒙开发中碰到的报错,问题已解决,写个文档记录一下这个问题及解决方案
recommend-type

安卓手机通讯录备份助手

可以导出为xls格式,也可以导入
recommend-type

BottleJS快速入门:演示JavaScript依赖注入优势

资源摘要信息:"BottleJS是一个轻量级的依赖项注入容器,用于JavaScript项目中,旨在减少导入依赖文件的数量并优化代码结构。该项目展示BottleJS在前后端的应用,并通过REST API演示其功能。" BottleJS Playgound 概述: BottleJS Playgound 是一个旨在演示如何在JavaScript项目中应用BottleJS的项目。BottleJS被描述为JavaScript世界中的Autofac,它是依赖项注入(DI)容器的一种实现,用于管理对象的创建和生命周期。 依赖项注入(DI)的基本概念: 依赖项注入是一种设计模式,允许将对象的依赖关系从其创建和维护的代码中分离出来。通过这种方式,对象不会直接负责创建或查找其依赖项,而是由外部容器(如BottleJS)来提供这些依赖项。这样做的好处是降低了模块间的耦合,提高了代码的可测试性和可维护性。 BottleJS 的主要特点: - 轻量级:BottleJS的设计目标是尽可能简洁,不引入不必要的复杂性。 - 易于使用:通过定义服务和依赖关系,BottleJS使得开发者能够轻松地管理大型项目中的依赖关系。 - 适合前后端:虽然BottleJS最初可能是为前端设计的,但它也适用于后端JavaScript项目,如Node.js应用程序。 项目结构说明: 该仓库的src目录下包含两个子目录:sans-bottle和bottle。 - sans-bottle目录展示了传统的方式,即直接导入依赖并手动协调各个部分之间的依赖关系。 - bottle目录则使用了BottleJS来管理依赖关系,其中bottle.js文件负责定义服务和依赖关系,为项目提供一个集中的依赖关系源。 REST API 端点演示: 为了演示BottleJS的功能,该项目实现了几个简单的REST API端点。 - GET /users:获取用户列表。 - GET /users/{id}:通过给定的ID(范围0-11)获取特定用户信息。 主要区别在用户路由文件: 该演示的亮点在于用户路由文件中,通过BottleJS实现依赖关系的注入,我们可以看到代码的组织和结构比传统方式更加清晰和简洁。 BottleJS 和其他依赖项注入容器的比较: - BottleJS相比其他依赖项注入容器如InversifyJS等,可能更轻量级,专注于提供基础的依赖项管理和注入功能。 - 它的设计更加直接,易于理解和使用,尤其适合小型至中型的项目。 - 对于需要高度解耦和模块化的大规模应用,可能需要考虑BottleJS以外的解决方案,以提供更多的功能和灵活性。 在JavaScript项目中应用依赖项注入的优势: - 可维护性:通过集中管理依赖关系,可以更容易地理解和修改应用的结构。 - 可测试性:依赖项的注入使得创建用于测试的mock依赖关系变得简单,从而方便单元测试的编写。 - 模块化:依赖项注入鼓励了更好的模块化实践,因为模块不需关心依赖的来源,只需负责实现其定义的接口。 - 解耦:模块之间的依赖关系被清晰地定义和管理,减少了直接耦合。 总结: BottleJS Playgound 项目提供了一个生动的案例,说明了如何在JavaScript项目中利用依赖项注入模式改善代码质量。通过该项目,开发者可以更深入地了解BottleJS的工作原理,以及如何将这一工具应用于自己的项目中,从而提高代码的可维护性、可测试性和模块化程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【版本控制】:R语言项目中Git与GitHub的高效应用

![【版本控制】:R语言项目中Git与GitHub的高效应用](https://opengraph.githubassets.com/2abf032294b9f2a415ddea58f5fde6fcb018b57c719dfc371bf792c251943984/isaacs/github/issues/37) # 1. 版本控制与R语言的融合 在信息技术飞速发展的今天,版本控制已成为软件开发和数据分析中不可或缺的环节。特别是对于数据科学的主流语言R语言,版本控制不仅帮助我们追踪数据处理的历史,还加强了代码共享与协作开发的效率。R语言与版本控制系统的融合,特别是与Git的结合使用,为R语言项
recommend-type

RT-DETR如何实现在实时目标检测中既保持精度又降低计算成本?请提供其技术实现的详细说明。

为了理解RT-DETR如何在实时目标检测中保持精度并降低计算成本,我们必须深入研究其架构优化和技术细节。RT-DETR通过融合CNN与Transformer的优势,提出了一种混合编码器结构,这种结构采用了尺度内交互(AIFI)和跨尺度融合(CCFM)策略来提取和融合多尺度图像特征,这些特征能够提供丰富的视觉上下文信息,从而提升了模型的检测精度。 参考资源链接:[RT-DETR:实时目标检测中的新胜者](https://wenku.csdn.net/doc/1ehyj4a8z2?spm=1055.2569.3001.10343) 在编码器阶段,RT-DETR使用主干网络提取图像特征,然后通过
recommend-type

vConsole插件使用教程:输出与复制日志文件

资源摘要信息:"vconsole-outputlog-plugin是一个JavaScript插件,它能够在vConsole环境中输出日志文件,并且支持将日志复制到剪贴板或下载。vConsole是一个轻量级、可扩展的前端控制台,通常用于移动端网页的调试。该插件的安装依赖于npm,即Node.js的包管理工具。安装完成后,通过引入vConsole和vConsoleOutputLogsPlugin来初始化插件,之后即可通过vConsole输出的console打印信息进行日志的复制或下载操作。这在进行移动端调试时特别有用,可以帮助开发者快速获取和分享调试信息。" 知识点详细说明: 1. vConsole环境: vConsole是一个专为移动设备设计的前端调试工具。它模拟了桌面浏览器的控制台,并添加了网络请求、元素选择、存储查看等功能。vConsole可以独立于原生控制台使用,提供了一个更为便捷的方式来监控和调试Web页面。 2. 日志输出插件: vconsole-outputlog-plugin是一个扩展插件,它增强了vConsole的功能,使得开发者不仅能够在vConsole中查看日志,还能将这些日志方便地输出、复制和下载。这样的功能在移动设备上尤为有用,因为移动设备的控制台通常不易于使用。 3. npm安装: npm(Node Package Manager)是Node.js的包管理器,它允许用户下载、安装、管理各种Node.js的包或库。通过npm可以轻松地安装vconsole-outputlog-plugin插件,只需在命令行执行`npm install vconsole-outputlog-plugin`即可。 4. 插件引入和使用: - 首先创建一个vConsole实例对象。 - 然后创建vConsoleOutputLogsPlugin对象,它需要一个vConsole实例作为参数。 - 使用vConsole对象的实例,就可以在其中执行console命令,将日志信息输出到vConsole中。 - 插件随后能够捕获这些日志信息,并提供复制到剪贴板或下载的功能。 5. 日志操作: - 复制到剪贴板:在vConsole界面中,通常会有“复制”按钮,点击即可将日志信息复制到剪贴板,开发者可以粘贴到其他地方进行进一步分析或分享。 - 下载日志文件:在某些情况下,可能需要将日志信息保存为文件,以便离线查看或作为报告的一部分。vconsole-outputlog-plugin提供了将日志保存为文件并下载的功能。 6. JavaScript标签: 该插件是使用JavaScript编写的,因此它与JavaScript紧密相关。JavaScript是一种脚本语言,广泛用于网页的交互式内容开发。此插件的开发和使用都需要一定的JavaScript知识,包括对ES6(ECMAScript 2015)版本规范的理解和应用。 7. 压缩包子文件: vconsole-outputlog-plugin-main文件名可能是指该插件的压缩包或分发版本,通常包含插件的源代码、文档和可能的配置文件。开发者可以通过该文件名在项目中正确地引用和使用插件。 通过掌握这些知识点,开发者可以有效地在vConsole环境中使用vconsole-outputlog-plugin插件,提高移动端网页的调试效率和体验。