车辆轨迹代码python
时间: 2025-01-03 19:39:50 浏览: 8
### Python代码实现车辆轨迹跟踪或仿真
对于车辆轨迹跟踪或仿真的Python代码,可以基于已有的框架和库来构建。下面提供了一个简单的例子,该实例展示了如何利用`numpy`和其他必要的库来进行基本的路径跟随控制算法模拟。
```python
import numpy as np
import matplotlib.pyplot as plt
class VehicleTrajectorySimulator:
def __init__(self, waypoints):
self.waypoints = waypoints # 轨迹上的航路点列表 [(x1,y1), (x2,y2)...]
self.current_position = np.array([0., 0.]) # 当前位置初始化为原点
self.heading_angle = 0. # 初始方向角设为零度
def update_state(self, velocity=1.0, steering_angle=0.0, dt=0.1):
"""更新车辆状态"""
distance_to_next_wp = lambda wp: ((wp[0]-self.current_position[0])**2 + \
(wp[1]-self.current_position[1])**2)**0.5
closest_waypoint_index = min(range(len(self.waypoints)), key=lambda i: distance_to_next_wp(self.waypoints[i]))
target_heading = np.arctan2(
self.waypoints[closest_waypoint_index][1] - self.current_position[1],
self.waypoints[closest_waypoint_index][0] - self.current_position[0])
delta_heading = target_heading - self.heading_angle
while delta_heading > np.pi:
delta_heading -= 2 * np.pi
while delta_heading < -np.pi:
delta_heading += 2 * np.pi
self.heading_angle += delta_heading * 0.1 + steering_angle * dt
dx = velocity * np.cos(self.heading_angle) * dt
dy = velocity * np.sin(self.heading_angle) * dt
self.current_position += np.array([dx, dy])
def simulate_trajectory():
simulator = VehicleTrajectorySimulator([(i*2, i*i/4.) for i in range(-10, 11)])
positions_x = []
positions_y = []
for _ in range(200):
simulator.update_state()
positions_x.append(simulator.current_position[0])
positions_y.append(simulator.current_position[1])
fig, ax = plt.subplots(figsize=(8,6))
ax.plot(*zip(*simulator.waypoints), marker='o', linestyle='', color="red", label="Waypoints")
ax.plot(positions_x, positions_y, 'b-', linewidth=2, label="Vehicle Path")
ax.set_xlabel('X Position')
ax.set_ylabel('Y Position')
ax.legend(loc="best")
plt.show()
simulate_trajectory()
```
此段脚本定义了一种简单的方法来追踪给定的一系列航路点,并通过调整转向角度使虚拟车尽可能靠近这些目标点[^1]。为了提高效率,在实际部署过程中可能还需要考虑更多因素如传感器数据融合、更复杂的控制器设计以及环境感知等特性[^2]。
阅读全文