weight_decay_bias
时间: 2024-06-15 18:02:46 浏览: 160
weight_decay_bias是一种在机器学习中常用的正则化技术,用于减小模型的过拟合风险。在神经网络中,权重衰减(weight decay)是通过在损失函数中添加一个正则化项来实现的。而weight_decay_bias则是对偏置项进行权重衰减。
在神经网络中,每个神经元都有一个偏置项(bias),它用于调整神经元的激活阈值。偏置项可以看作是神经元的自身偏好或者对输入数据的偏见。在训练神经网络时,我们希望模型能够更好地适应训练数据,但过拟合可能导致模型在训练数据上表现很好,但在未见过的数据上表现较差。
为了避免过拟合,我们可以使用正则化技术来约束模型的复杂度。其中一种常见的正则化技术就是权重衰减(weight decay)。权重衰减通过在损失函数中添加一个正则化项,使得模型更倾向于选择较小的权重值。这样可以有效地减小模型的复杂度,降低过拟合的风险。
而weight_decay_bias则是对偏置项进行权重衰减的一种变体。它的作用是在正则化过程中对偏置项进行约束,使得模型更倾向于选择较小的偏置值。通过对偏置项进行权重衰减,可以进一步减小模型的复杂度,提高模型的泛化能力。
相关问题
assert(args.solver in ['adam', 'sgd']) print('=> setting {} solver'.format(args.solver)) param_groups = [{'params': model.module.bias_parameters(), 'weight_decay': args.bias_decay}, {'params': model.module.weight_parameters(), 'weight_decay': args.weight_decay}] if args.solver == 'adam': optimizer = torch.optim.Adam(param_groups, args.lr, betas=(args.momentum, args.beta)) elif args.solver == 'sgd': optimizer = torch.optim.SGD(param_groups, args.lr, momentum=args.momentum)
这段代码用于选择并配置优化器(optimizer)来优化模型的参数。
首先,使用`assert`语句来确保`args.solver`的值是`'adam'`或`'sgd'`,如果不是,程序会抛出一个AssertionError。
接下来,根据`args.solver`的值选择相应的优化器,并打印出所选择的优化器。代码块中的if-elif条件语句用于根据`solver`的值来选择优化器,分别是Adam和SGD。
然后,根据模型的参数进行分组,并为每个参数组设置权重衰减(weight_decay)。这里使用了`model.module.bias_parameters()`和`model.module.weight_parameters()`来获取模型中的偏置参数和权重参数。
最后,根据选择的优化器和参数组,创建一个优化器对象,并传入学习率(args.lr),以及其他特定于优化器的参数(如Adam的betas或SGD的momentum)。
通过这段代码,可以根据命令行参数(args)选择并配置不同的优化器来训练模型。
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] coder_named_params = list(model.coder.named_parameters()) for name, param in coder_named_params: if name in {'bert_ebd.word_embeddings.weight', 'bert_ebd.position_embeddings.weight', 'bert_ebd.token_type_embeddings.weight'}: param.requires_grad = False pass optim_params = [{'params': [p for n, p in coder_named_params if not any(nd in n for nd in no_decay)], 'lr': meta_lr, 'weight_decay': weight_decay}, {'params': [p for n, p in coder_named_params if any(nd in n for nd in no_decay)], 'lr': meta_lr, 'weight_decay': 0.0}, ]
这段代码看起来是在设置模型的优化参数。首先,它创建了一个名为`no_decay`的列表,其中包含了不需要进行权重衰减的参数的名称。然后,它获取了模型中编码器(coder)的所有参数,并遍历每个参数。
在遍历过程中,如果参数的名称在`bert_ebd.word_embeddings.weight`、`bert_ebd.position_embeddings.weight`或者`bert_ebd.token_type_embeddings.weight`中,那么将设置该参数的`requires_grad`为False,即不对该参数进行梯度更新。
最后,根据参数名称是否在`no_decay`列表中,将参数分为两个组别:一个组别需要进行权重衰减(有weight_decay),另一个组别不需要进行权重衰减(weight_decay为0.0)。每个组别都有相同的学习率`meta_lr`。
这样就创建了一个优化器参数列表`optim_params`,其中包含了按照上述规则分组的模型参数和对应的学习率、权重衰减。
阅读全文
相关推荐
















