抛物线法求近似极小点MATLAB程序
时间: 2024-09-27 08:06:25 浏览: 111
抛物线法,也称为二分法的一种变种,是一种迭代算法,常用于寻找函数的局部最小值。在MATLAB中,你可以使用内置函数如`fminunc`或`optimset`结合自定义函数来实现这个过程。以下是一个简单的例子:
```matlab
% 定义目标函数
function f = myFunction(x)
% 这里替换为你要找极小点的具体函数
f = x.^2 + 5*x + 6; % 例如一个二次函数
end
% 初始化搜索范围
x0 = -10; % 初始猜测点
xFinal = 10; % 上限
options = optimset('Algorithm', 'quasi-newton'); % 使用牛顿法
% 设置最大迭代次数和精度
maxIter = 100;
tolerance = 1e-4;
% 开始抛物线法求解
for iter = 1:maxIter
% 计算当前点处的一阶导数
dfdx = diff(myFunction([x0, xFinal]), 1)./2;
% 如果一阶导数几乎为零,说明接近极小点
if abs(dfdx) < tolerance
break;
end
% 根据导数选择下一个搜索区间
if ddx > 0
x0 = x0 - (x0 - xFinal)/dfdx;
else
xFinal = xFinal - (xFinal - x0)/dfdx;
end
end
% 输出结果
[minVal, minPoint] = myFunction(x0);
fprintf('找到的极小点大约是 x=%f, 函数值 f(x)=%f\n', minPoint, minVal);
```
阅读全文