data=Genre_data_NA Genre_name = data._stat_axis.values.tolist()

时间: 2024-04-15 10:26:06 浏览: 13
这段代码将之前计算得到的北美地区不同游戏类型销售额的数据存储在变量`data`中,并将游戏类型的名称存储在变量`Genre_name`中。 1. `data=Genre_data_NA`:这行代码将之前计算得到的北美地区不同游戏类型销售额的数据存储在变量`data`中。这个数据包含了游戏类型和对应的销售额。 2. `Genre_name = data._stat_axis.values.tolist()`:这行代码通过访问`data`对象的`_stat_axis`属性,获取游戏类型的标签,并将其转换为列表形式存储在变量`Genre_name`中。这样可以方便后续使用游戏类型的名称进行数据分析和可视化。
相关问题

Genre_data_NA = data.pivot_table(index = ['Genre',],values='NA_Sales',aggfunc=np.sum).sort_values('NA_Sales',ascending=False) Genre_data_EU =data.pivot_table(index = ['Genre',],values='EU_Sales',aggfunc=np.sum).sort_values('EU_Sales',ascending=False) Genre_data_JP = data.pivot_table(index = ['Genre',],values='JP_Sales',aggfunc=np.sum).sort_values('JP_Sales',ascending=False) Genre_data_Other =data.pivot_table(index = ['Genre',],values='Other_Sales',aggfunc=np.sum).sort_values('Other_Sales',ascending=False) Genre_data_NA # Genre_data_DF = pd.concat([Genre_data_NA,Genre_data_EU,Genre_data_JP,Genre_data_Other],axis = 1) data=Genre_data_NA Genre_name = data._stat_axis.values.tolist() # explodes=[0.1,0.1,0.1,0.1] plt.figure(figsize=(10,10)) plt.subplot(2,2,1) plt.pie(x=Genre_data_NA,labels=Genre_name,autopct="%0.1f%%",shadow=True) plt.title("北美地区的不同类型游戏销售额") plt.subplot(2,2,2) plt.pie(x=Genre_data_EU,labels=Genre_name,autopct="%0.1f%%",shadow=True) plt.title("欧洲地区的不同类型游戏销售额") plt.subplot(2,2,3) plt.pie(x=Genre_data_JP,labels=Genre_name,autopct="%0.1f%%",shadow=True) plt.title("日本地区的不同类型游戏销售额") plt.subplot(2,2,4) plt.pie(x=Genre_data_Other,labels=Genre_name,autopct="%0.1f%%",shadow=True) plt.title("其它地区的不同类型游戏销售额") plt.show()

这段代码用于绘制不同地区(北美、欧洲、日本和其他地区)的游戏销售额占比的饼图。下面是对代码的解释: 1. `Genre_data_NA = data.pivot_table(index = ['Genre',],values='NA_Sales',aggfunc=np.sum).sort_values('NA_Sales',ascending=False)`:这行代码使用`pivot_table`函数创建一个数据透视表,按照游戏类型(Genre)对北美地区的销售额(NA_Sales)进行分组,并计算每种类型游戏的销售总额,然后按降序排列。 2. `Genre_data_EU =data.pivot_table(index = ['Genre',],values='EU_Sales',aggfunc=np.sum).sort_values('EU_Sales',ascending=False)`:这行代码同样使用`pivot_table`函数创建一个数据透视表,按照游戏类型对欧洲地区的销售额进行分组,并计算每种类型游戏的销售总额,然后按降序排列。 3. `Genre_data_JP = data.pivot_table(index = ['Genre',],values='JP_Sales',aggfunc=np.sum).sort_values('JP_Sales',ascending=False)` 和 `Genre_data_Other =data.pivot_table(index = ['Genre',],values='Other_Sales',aggfunc=np.sum).sort_values('Other_Sales',ascending=False)`:这两行代码分别创建了针对日本地区和其他地区的数据透视表,计算每种类型游戏在不同地区的销售总额。 4. `plt.figure(figsize=(10,10))`:这行代码创建一个大小为10x10英寸的画布。 5. `plt.subplot(2,2,1)` 到 `plt.subplot(2,2,4)`:这四行代码分别创建了一个包含四个子图的图像,每个子图对应一个地区的销售额占比饼图。 6. `plt.pie(x=Genre_data_NA,labels=Genre_name,autopct="%0.1f%%",shadow=True)` 到 `plt.pie(x=Genre_data_Other,labels=Genre_name,autopct="%0.1f%%",shadow=True)`:这四行代码使用`pie`函数绘制饼图,其中x参数为销售额数据,labels参数为游戏类型的名称,autopct参数为饼图上显示的百分比格式,shadow参数为是否显示阴影效果。 7. `plt.title("北美地区的不同类型游戏销售额")` 到 `plt.title("其它地区的不同类型游戏销售额")`:这四行代码分别设置四个子图的标题。 8. `plt.show()`:这行代码显示绘制的饼图。 通过这段代码,可以对比不同地区的游戏销售额占比情况,进一步分析各地区的游戏市场偏好和销售趋势。

Plat_Genre = pd.crosstab(data.Platform,data.Genre) Plat_Genre_sum = Plat_Genre.sum(axis=1).sort_values(ascending = False)

这段代码执行了两个操作: 1. `Plat_Genre = pd.crosstab(data.Platform, data.Genre)`:它使用 `pd.crosstab()` 函数创建了一个交叉表,用于统计不同平台(Platform)和不同类型(Genre)的游戏的数量。它会计算每个平台上每种类型的游戏的数量,并将结果存储在 `Plat_Genre` 变量中。 2. `Plat_Genre_sum = Plat_Genre.sum(axis=1).sort_values(ascending=False)`:它计算了每个平台上游戏的总数量,并按降序对结果进行排序。`sum(axis=1)` 表示沿着行的方向(即每个平台)对数量进行求和,然后 `sort_values(ascending=False)` 将结果按降序排序。最终,结果保存在 `Plat_Genre_sum` 变量中。

相关推荐

import requests from bs4 import BeautifulSoup import openpyxl def get_movie_data(year): url = f'https://maoyan.com/films?year={year}' headers = {'User-Agent': 'Mozilla/5.0'} response = requests.get(url, headers=headers) if response.status_code == 200: soup = BeautifulSoup(response.content, 'html.parser') movies = soup.select('.movie-item-title') movie_data = [] for movie in movies: movie_link = 'https://maoyan.com' + movie.a['href'] movie_data.append(get_movie_details(movie_link)) return movie_data else: print(f"Failed to fetch data for year {year}") return [] def get_movie_details(url): headers = {'User-Agent': 'Mozilla/5.0'} response = requests.get(url, headers=headers) if response.status_code == 200: soup = BeautifulSoup(response.content, 'html.parser') movie_name = soup.select_one('h1.name').text.strip() release_date = soup.select_one('.info-release').text.strip() genre = soup.select_one('.info-category').text.strip() director = soup.select_one('.info-director').text.strip() actors = [actor.text.strip() for actor in soup.select('.info-actor a')] maoyan_score = soup.select_one('.score-num').text.strip() box_office = soup.select_one('.info-num').text.strip() return { '电影名称': movie_name, '上映日期': release_date, '影片类型': genre, '导演': director, '演员': ', '.join(actors), '猫眼口碑': maoyan_score, '累计票房': box_office } else: print(f"Failed to fetch details for {url}") return {} def save_to_excel(data, filename): wb = openpyxl.Workbook() ws = wb.active headers = ['电影名称', '上映日期', '影片类型', '导演', '演员', '猫眼口碑', '累计票房'] ws.append(headers) for movie in data: row_data = [movie.get(header, '') for header in headers] ws.append(row_data) wb.save(filename) print(f"Data saved to {filename}") if __name__ == '__main__': years = range(2017, 2021) all_movie_data = [] for year in years: movie_data = get_movie_data(year) all_movie_data.extend(movie_data) save_to_excel(all_movie_data, 'maoyan_movies_2017_to_2020.xlsx')

优化以下代码,# 构建特征矩阵和标签向量 X = [] y = data['Rating'] for index, row in data.iterrows(): features = [] # 添加运行时长区间评分 if pd.notna(row['RunTime']): category1 = pd.cut([row['RunTime']], bins=bins1, labels=labels1)[0] if category1 in avg_runtime_ratings: features.append(avg_runtime_ratings[category1]) else: features.append(0) else: features.append(0) # 添加年份区间评分 if pd.notna(row['year']): category2 = pd.cut([row['year']], bins=bins2, labels=labels2)[0] if category2 in avg_year_ratings: features.append(avg_year_ratings[category2]) else: features.append(0) else: features.append(0) # 添加导演评分 if row.Director in avg_director_ratings: features.append(avg_director_ratings[row.Director]) else: features.append(0) # 添加编剧评分 if row.Writer in avg_writer_ratings: features.append(avg_writer_ratings[row.Writer]) else: features.append(0) # 添加主演评分 casts = row.TopTwoCasts.split(',') if len(casts) == 1: cast = casts[0] if cast in avg_casts_ratings: features.append(avg_casts_ratings[cast]) else: features.append(0) features.extend([0, 0]) else: cast_1, cast_2 = casts if cast_1 in avg_casts_ratings: features.append(avg_casts_ratings[cast_1] * 0.6) else: features.append(0) if cast_2 in avg_casts_ratings: features.append(avg_casts_ratings[cast_2] * 0.4) else: features.append(0) # 添加类型评分 genres = row.Genres.split(',') if len(genres) == 1: genre = genres[0] if genre in avg_genres_ratings: features.append(avg_genres_ratings[genre]) else: features.append(0) features.extend([0, 0]) elif len(genres) == 2: genre_1, genre_2 = genres if genre_1 in avg_genres_ratings: features.append(avg_genres_ratings[genre_1] * 0.6) else: features.append(0) if genre_2 in avg_genres_ratings: features.append(avg_genres_ratings[genre_2] * 0.4) else: features.append(0) features.append(0) else: genre_1, genre_2, genre_3 = genres if genre_1 in avg_genres_ratings: features.append(avg_genres_ratings[genre_1] * 0.4) else: features.append(0) if genre_2 in avg_genres_ratings: features.append(avg_genres_ratings[genre_2] * 0.3) else: features.append(0) if genre_3 in avg_genres_ratings: features.append(avg_genres_ratings[genre_3] * 0.3) else: features.append(0) X.append(features) X = pd.DataFrame(X)

import requests from bs4 import BeautifulSoup url = 'https://movie.douban.com/subject/30228394/' header = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)\ AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36'} response = requests.get(url=url, headers=header) soup = BeautifulSoup(response.text, 'html.parser') tv_infor = {} # 1.获取电视剧名称 name = soup.find(property="v:itemreviewed").string # 根据属性property="v: itemreviewed"查找 tv_infor['name'] = name # 将电影名称加到字典tv_infor中 # 2.获取导演 director = soup.find(rel="v: directedBy").string # 根据属性re1="v:directedBy“查找 tv_infor['director'] = director # 3.获取编剧 soup_list = soup. findAll(class_="attrs")[1].findAll('a') writers = [elem. string for elem in soup_list] tv_infor['writers'] = writers # 4.获取演员 soup_list = soup. findAll(rel="v:starring") actors = [elem. string for elem in soup_list] tv_infor['actors'] = actors # 5.获取类型 soup_list = soup. findAll(property="v: genre") tv_type = [elem. string for elem in soup_list] tv_infor['type'] = tv_type # 6.首播时间 release_date = soup.find(property="v: initialReleaseDate").string tv_infor['release_date'] = release_date # 7.豆瓣评分 rating = soup.find(property="v: average").string tv_infor['rating'] = rating # 8.参评人数 votes = soup.find(property="v: votes").string tv_infor['votes'] = votes print("电视剧《觉醒年代》相关信息如下:") for key, value in tv_infor.items(): print(key, ":", value)运行报错

最新推荐

recommend-type

埃森哲制药企业数字化转型项目顶层规划方案glq.pptx

埃森哲制药企业数字化转型项目顶层规划方案glq.pptx
recommend-type

华为OD机试D卷 - 机场航班调度程序 - 免费看解析和代码.html

私信博主免费获取真题解析以及代码
recommend-type

基于FPGA读取设计的心电图代码源码+全部资料齐全.zip

【资源说明】 基于FPGA读取设计的心电图代码源码+全部资料齐全.zip基于FPGA读取设计的心电图代码源码+全部资料齐全.zip 【备注】 1、该项目是高分课程设计项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过mac/window10/11/linux测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也可作为课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于Hadoop平台的分布式搜索引擎的设计与实现+部署文档+全部资料 高分项目.zip

【资源说明】 基于Hadoop平台的分布式搜索引擎的设计与实现+部署文档+全部资料 高分项目.zip基于Hadoop平台的分布式搜索引擎的设计与实现+部署文档+全部资料 高分项目.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依