tarjan算法缩点

时间: 2024-05-18 13:16:31 浏览: 15
Tarjan算法是一种用于图的强连通分量(SCC)的缩点算法。它是由Robert Tarjan在1972年提出的。该算法可以将一个给定的有向图分解为多个强连通分量,并且将每个强连通分量缩成一个点,从而得到一个有向无环图(DAG)。 算法的基本思想是通过深度优先搜索(DFS)遍历图的节点,并在遍历的过程中维护一个栈来记录遍历路径上的节点。当遍历到某个节点时,可以通过判断该节点是否在栈中来判断是否找到了一个强连通分量。如果找到了强连通分量,则可以从栈中依次取出这些节点,将它们缩成一个点,并且将这个点标记为已访问。通过不断地执行这个过程,直到所有节点都被访问完毕,就可以得到图的所有强连通分量。 缩点操作可以用一个新的有向图来表示原图的强连通分量。新图中的节点表示原图中的强连通分量,边表示原图中的边所关联的强连通分量之间的关系。通过缩点操作,可以将原图中的复杂结构变得更简洁,同时保留了原图中强连通分量之间的关系。缩点后的图是一个DAG,可以用于进行一些基于拓扑排序的算法。 Tarjan算法的时间复杂度是O(V+E),其中V是图的节点数,E是图的边数。该算法在实际应用中广泛使用,例如在求解强连通分量、找出割点和桥等问题上都有应用。
相关问题

Tarjan缩点算法的原理

Tarjan缩点算法是一种图算法,用于在有向图中找到强连通分量。其基本原理是通过深度优先搜索遍历图,同时记录每个节点的搜索次序和能够到达的最小搜索次序,通过这些信息可以判断节点是否在一个强连通分量中,并将这些节点缩成一个点,形成新的有向无环图。具体步骤如下: 1. 初始化。对于每个节点,记录其搜索次序为0,能够到达的最小搜索次序为无穷大,同时建立一个栈来存储节点。 2. 深度优先搜索。从任意一个节点开始进行深度优先搜索,同时记录每个节点的搜索次序和能够到达的最小搜索次序。如果搜索到的节点不在栈中,将其加入栈中。 3. 判断是否为强连通分量。当搜索到节点u时,如果能够找到一个节点v满足v的搜索次序小于u的能够到达的最小搜索次序,说明u可以从v到达,即u和v在同一个强连通分量中,将u和v之间的所有节点都弹出栈,并将它们缩成一个点。 4. 重复步骤2和步骤3,直到所有节点都被搜索过。 5. 缩点。将所有被缩成一个点的节点形成一个新的有向无环图,其中每个节点表示一个强连通分量。 Tarjan缩点算法的时间复杂度为O(V+E),其中V为节点数,E为边数。它是求解强连通分量的最优算法之一。

Tarjan算法和Kosaraju算法

Tarjan算法和Kosaraju算法都是求解有向图强连通分量的算法,它们的时间复杂度都为O(N+M),其中N为图中节点数,M为图中边数。 Tarjan算法的基本思想是通过DFS遍历图中的节点,并在遍历的过程中维护一个栈,用于存储已经遍历过的节点。在遍历的过程中,对于每个节点,记录它被遍历到的时间戳和能够到达的最小时间戳,当一个节点的最小时间戳等于它自身的时间戳时,说明这个节点及其之前遍历到的节点构成了一个强连通分量,将这些节点从栈中弹出即可。 Kosaraju算法的基本思想是先对原图进行一次DFS,得到一个反向图,然后再对反向图进行DFS。在第二次DFS的过程中,每次从未被访问过的节点开始遍历,遍历到的所有节点构成一个强连通分量。 两种算法的具体实现可以参考以下代码: ```python # Tarjan算法 def tarjan(u): dfn[u] = low[u] = timestamp timestamp += 1 stk.append(u) for v in graph[u]: if not dfn[v]: tarjan(v) low[u] = min(low[u], low[v]) elif v in stk: low[u] = min(low[u], dfn[v]) if dfn[u] == low[u]: scc = [] while True: v = stk.pop() scc.append(v) if v == u: break scc_list.append(scc) # Kosaraju算法 def dfs1(u): vis[u] = True for v in graph[u]: if not vis[v]: dfs1(v) stk.append(u) def dfs2(u): vis[u] = True scc.append(u) for v in reverse_graph[u]: if not vis[v]: dfs2(v) # 构建图和反向图 graph = [[] for _ in range(n)] reverse_graph = [[] for _ in range(n)] for u, v in edges: graph[u].append(v) reverse_graph[v].append(u) # Tarjan算法求解强连通分量 dfn = [0] * n low = [0] * n timestamp = 1 stk = [] scc_list = [] for i in range(n): if not dfn[i]: tarjan(i) # Kosaraju算法求解强连通分量 vis = [False] * n stk = [] scc_list = [] for i in range(n): if not vis[i]: dfs1(i) vis = [False] * n while stk: u = stk.pop() if not vis[u]: scc = [] dfs2(u) scc_list.append(scc) ```

相关推荐

最新推荐

recommend-type

简历模板简洁风简历精美模板.zip

在竞争激烈的职场中,一份专业且引人注目的简历是你通往梦想工作的黄金钥匙。我们特别为你呈现精选的面试求职简历模板,每一款都设计独特、格式清晰,帮助你在众多候选人中脱颖而出。 这些简历模板采用多种风格与布局,无论是创新、传统还是现代简约,都能满足不同行业与职位的需求。它们不只拥有吸引人的外表,更重要的是其实用性强,使得招聘经理能一眼捕捉到你的核心竞争力与职业亮点。 模板的易编辑性让你能快速个性化地调整内容,针对性地展现你的才华和经验。使用这些模板,你将更容易获得面试机会,并有效地向雇主展示你的潜力和价值。 不要让平凡无奇的简历阻挡你的职场前进之路。立即下载这些令人眼前一亮的简历模板,开启你的职场新旅程。记住,美好的第一印象是成功的开始,而一份精心制作的简历,就是你赢得梦想工作的第一块敲门砖。
recommend-type

建筑结构\施工图\B型施工图-建筑-平面图.dwg

建筑结构\施工图\B型施工图-建筑-平面图.dwg
recommend-type

工业AI视觉检测解决方案.pptx

工业AI视觉检测解决方案.pptx是一个关于人工智能在工业领域的具体应用,特别是针对视觉检测的深入探讨。该报告首先回顾了人工智能的发展历程,从起步阶段的人工智能任务失败,到专家系统的兴起到深度学习和大数据的推动,展示了人工智能从理论研究到实际应用的逐步成熟过程。 1. 市场背景: - 人工智能经历了从计算智能(基于规则和符号推理)到感知智能(通过传感器收集数据)再到认知智能(理解复杂情境)的发展。《中国制造2025》政策强调了智能制造的重要性,指出新一代信息技术与制造技术的融合是关键,而机器视觉因其精度和效率的优势,在智能制造中扮演着核心角色。 - 随着中国老龄化问题加剧和劳动力成本上升,以及制造业转型升级的需求,机器视觉在汽车、食品饮料、医药等行业的渗透率有望提升。 2. 行业分布与应用: - 国内市场中,电子行业是机器视觉的主要应用领域,而汽车、食品饮料等其他行业的渗透率仍有增长空间。海外市场则以汽车和电子行业为主。 - 然而,实际的工业制造环境中,由于产品种类繁多、生产线场景各异、生产周期不一,以及标准化和个性化需求的矛盾,工业AI视觉检测的落地面临挑战。缺乏统一的标准和模型定义,使得定制化的解决方案成为必要。 3. 工业化前提条件: - 要实现工业AI视觉的广泛应用,必须克服标准缺失、场景多样性、设备技术不统一等问题。理想情况下,应有明确的需求定义、稳定的场景设置、统一的检测标准和安装方式,但现实中这些条件往往难以满足,需要通过技术创新来适应不断变化的需求。 4. 行业案例分析: - 如金属制造业、汽车制造业、PCB制造业和消费电子等行业,每个行业的检测需求和设备技术选择都有所不同,因此,解决方案需要具备跨行业的灵活性,同时兼顾个性化需求。 总结来说,工业AI视觉检测解决方案.pptx着重于阐述了人工智能如何在工业制造中找到应用场景,面临的挑战,以及如何通过标准化和技术创新来推进其在实际生产中的落地。理解这个解决方案,企业可以更好地规划AI投入,优化生产流程,提升产品质量和效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MySQL运维最佳实践:经验总结与建议

![MySQL运维最佳实践:经验总结与建议](https://ucc.alicdn.com/pic/developer-ecology/2eb1709bbb6545aa8ffb3c9d655d9a0d.png?x-oss-process=image/resize,s_500,m_lfit) # 1. MySQL运维基础** MySQL运维是一项复杂而重要的任务,需要深入了解数据库技术和最佳实践。本章将介绍MySQL运维的基础知识,包括: - **MySQL架构和组件:**了解MySQL的架构和主要组件,包括服务器、客户端和存储引擎。 - **MySQL安装和配置:**涵盖MySQL的安装过
recommend-type

stata面板数据画图

Stata是一个统计分析软件,可以用来进行数据分析、数据可视化等工作。在Stata中,面板数据是一种特殊类型的数据,它包含了多个时间段和多个个体的数据。面板数据画图可以用来展示数据的趋势和变化,同时也可以用来比较不同个体之间的差异。 在Stata中,面板数据画图有很多种方法。以下是其中一些常见的方法
recommend-type

智慧医院信息化建设规划及愿景解决方案.pptx

"智慧医院信息化建设规划及愿景解决方案.pptx" 在当今信息化时代,智慧医院的建设已经成为提升医疗服务质量和效率的重要途径。本方案旨在探讨智慧医院信息化建设的背景、规划与愿景,以满足"健康中国2030"的战略目标。其中,"健康中国2030"规划纲要强调了人民健康的重要性,提出了一系列举措,如普及健康生活、优化健康服务、完善健康保障等,旨在打造以人民健康为中心的卫生与健康工作体系。 在建设背景方面,智慧医院的发展受到诸如分级诊疗制度、家庭医生签约服务、慢性病防治和远程医疗服务等政策的驱动。分级诊疗政策旨在优化医疗资源配置,提高基层医疗服务能力,通过家庭医生签约服务,确保每个家庭都能获得及时有效的医疗服务。同时,慢性病防治体系的建立和远程医疗服务的推广,有助于减少疾病发生,实现疾病的早诊早治。 在规划与愿景部分,智慧医院的信息化建设包括构建完善的电子健康档案系统、健康卡服务、远程医疗平台以及优化的分级诊疗流程。电子健康档案将记录每位居民的动态健康状况,便于医生进行个性化诊疗;健康卡则集成了各类医疗服务功能,方便患者就医;远程医疗技术可以跨越地域限制,使优质医疗资源下沉到基层;分级诊疗制度通过优化医疗结构,使得患者能在合适的层级医疗机构得到恰当的治疗。 在建设内容与预算方面,可能涉及硬件设施升级(如医疗设备智能化)、软件系统开发(如电子病历系统、预约挂号平台)、网络基础设施建设(如高速互联网接入)、数据安全与隐私保护措施、人员培训与技术支持等多个方面。预算应考虑项目周期、技术复杂性、维护成本等因素,以确保项目的可持续性和效益最大化。 此外,"互联网+医疗健康"的政策支持鼓励创新,智慧医院信息化建设还需要结合移动互联网、大数据、人工智能等先进技术,提升医疗服务的便捷性和精准度。例如,利用AI辅助诊断、物联网技术监控患者健康状态、区块链技术保障医疗数据的安全共享等。 智慧医院信息化建设是一项系统工程,需要政府、医疗机构、技术供应商和社会各方共同参与,以实现医疗服务质量的提升、医疗资源的优化配置,以及全民健康水平的提高。在2023年的背景下,这一进程将进一步加速,为我国的医疗健康事业带来深远影响。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MySQL监控与预警:故障预防与快速响应

![MySQL监控与预警:故障预防与快速响应](https://www.tingyun.com/wp-content/uploads/2024/01/%E5%9F%BA%E8%B0%831-6.png) # 1. MySQL监控概述** MySQL监控是确保数据库系统稳定、高效运行的关键实践。通过监控,DBA可以及时发现并解决性能瓶颈、故障隐患,从而保障业务的正常运行。 MySQL监控涵盖了对系统、数据库和SQL层面的全面监控。它包括收集和分析各种性能指标,如CPU利用率、内存使用率、查询执行时间等,以了解数据库的运行状况。通过监控,DBA可以及时发现性能下降、资源瓶颈和异常行为,并采取措
recommend-type

C语言MAKEU32函数

C语言中的MAKEU32函数用于将4个8位的字节转换为一个32位的无符号整数。该函数通常被用于网络编程、位操作等领域。 MAKEU32函数的实现方式如下: ```c unsigned int MAKEU32(unsigned char a, unsigned char b, unsigned char c, unsigned char d) { return ((unsigned int)a << 24) | ((unsigned int)b << 16) | ((unsigned int)c << 8) | (unsigned int)d; } ``` 该函数接收4个8位的字节