iris_X_train, iris_X_test, iris_y_train, iris_y_test = train_test_split(iris.data, iris.target, test_size=0.2)
时间: 2023-11-04 19:56:34 浏览: 94
iris_X_train, iris_X_test, iris_y_train, iris_y_test = train_test_split(iris.data, iris.target, test_size=0.2)是将鸢尾花数据集中的特征数据和目标变量数据分别划分为训练集和测试集的操作。其中,iris.data包含了鸢尾花的四个特征(萼片长度、萼片宽度、花瓣长度、花瓣宽度),iris.target包含了鸢尾花的类别标签(0代表Setosa、1代表Versicolor、2代表Virginica)。train_test_split函数会将数据集按照给定的比例进行划分,其中test_size参数指定了测试集所占的比例,这里设置为0.2表示测试集占整个数据集的20%。
相关问题
from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score iris = datasets.load_iris() iris_X = iris.data iris_y = iris.target X_train, X_test, y_train, y_test = train_test_split(iris_X, iris_y, test_size=0.3) knn = KNeighborsClassifier () knn.fit(X_train,y_train) y_knn = knn.predict(X_test) print('分类器得到的分类:\n ',y_knn) print('真实分类:\n ',y_test) print('准确率为:',accuracy_score(y_test,y_knn))采用随机森林模型来改写,用python
好的,以下是使用随机森林模型对鸢尾花数据集进行分类的代码:
```
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
# 加载鸢尾花数据集
iris = datasets.load_iris()
iris_X = iris.data
iris_y = iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(iris_X, iris_y, test_size=0.3)
# 创建随机森林分类器
rfc = RandomForestClassifier(n_estimators=100)
# 训练模型
rfc.fit(X_train, y_train)
# 预测测试集
y_rfc = rfc.predict(X_test)
# 输出分类结果和准确率
print('分类器得到的分类:\n ', y_rfc)
print('真实分类:\n ', y_test)
print('准确率为:', accuracy_score(y_test, y_rfc))
```
其中,`RandomForestClassifier`是sklearn中的随机森林模型,`n_estimators`表示树的数量。
from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score iris = datasets.lond_iris() iris_X = iris.data iris_y = iris.target X_train,X_test,y_train,y_test = train_test_split(iris_X,iris_y,test_sizo=0.3) knn = KNeighborsClassifier () knn.fit(X_train,y_train) y_knn = knn.predict(X_test) print('分类器得到的分类:\ n ',y_knn) print('真实分类:\ n ',y_test) print('准确率为:',accuracy_score(y_test,y_knn))改写成sklearn库的支持向量机算法对iris数据集进行分类,用python
可以改写成以下代码:
```
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
iris = datasets.load_iris()
iris_X = iris.data
iris_y = iris.target
X_train, X_test, y_train, y_test = train_test_split(iris_X, iris_y, test_size=0.3)
svm = SVC()
svm.fit(X_train, y_train)
y_svm = svm.predict(X_test)
print('分类器得到的分类:\n', y_svm)
print('真实分类:\n', y_test)
print('准确率为:', accuracy_score(y_test, y_svm))
```
这里使用的是支持向量机算法进行分类,其他代码和 K 近邻算法的实现类似,只需要将 KNeighborsClassifier 改成 SVC 即可。
阅读全文