pd.read_csv(file).values.tolist()
时间: 2024-06-13 18:04:33 浏览: 154
pd.read_csv(file).values.tolist()是一种将csv文件读取为列表的方法。它会将csv文件读取为一个pandas的DataFrame对象,然后将其转换为一个二维列表。其中,每一行对应一个子列表,每个子列表中的元素对应于该行中的每个字段。这个方法可以方便地将csv文件中的数据读取到内存中,并进行后续的处理和分析。
另外,引用中还提供了另外一种将DataFrame对象转换为列表的方法,即将DataFrame对象转换为ndarray,然后再将其转换为列表。这种方法可以更加灵活地控制列表的形状和维度。
相关问题
pd.read_csv
pd.read_csv() is a function in the pandas library of Python that reads a CSV (Comma Separated Values) file and returns a pandas DataFrame. The function takes a file path as an argument and can also take several optional parameters like delimiter, header, encoding, etc.
Syntax:
```python
pd.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, dtype=None, skiprows=None, nrows=None, skip_blank_lines=True, na_values=None, keep_default_na=True, verbose=False, skipinitialspace=False, converters=None, encoding=None, squeeze=False)
```
Some of the commonly used parameters of pd.read_csv() are:
- filepath_or_buffer: the path to the CSV file or a URL.
- sep: the delimiter used in the CSV file.
- header: the row number(s) to use as the column names, default is 'infer'.
- names: a list of column names to use instead of the names in the CSV file.
- index_col: the column to use as the index of the DataFrame.
- dtype: a dictionary of data types for the columns in the DataFrame.
- skiprows: the number of rows to skip from the beginning of the file.
- na_values: a list of values to be treated as missing values.
- encoding: the encoding of the CSV file.
import mifs import pandas as pd image_data = pd.read_csv(r'D:\smoth\3D_res34_pearson.csv', header=0) x=image_data[image_data.columns[1:]] label = pd.read_csv('D:/smoth/label.csv', header=0) y = label['label'] feat_selector = mifs.MutualInformationFeatureSelector('MRMR', k=1) feat_selector.fit(x, y) # call transform() on X to filter it down to selected features X_filtered = feat_selector.transform(x.values) # Create list of features feature_name = x.columns[feat_selector.ranking_] print(feature_name) # Write selected features to CSV file selected_features = x[feature_name] selected_features.to_csv(r'D:\smoth\3D_res34_mrmr.csv', index=None) 将这段代码修改一下保留第一列
修改后的代码如下所示,已保留第一列:
```python
import mifs
import pandas as pd
image_data = pd.read_csv(r'D:\smoth\3D_res34_pearson.csv', header=0)
x = image_data.iloc[:, 1:] # 保留第一列之后的所有列
label = pd.read_csv('D:/smoth/label.csv', header=0)
y = label['label']
feat_selector = mifs.MutualInformationFeatureSelector('MRMR', k=1)
feat_selector.fit(x, y)
# 调用 transform() 来筛选出选择的特征
X_filtered = feat_selector.transform(x.values)
# 创建特征列表
feature_name = x.columns[feat_selector.ranking_]
print(feature_name)
# 将选择的特征写入CSV文件
selected_features = x[feature_name]
selected_features.to_csv(r'D:\smoth\3D_res34_mrmr.csv', index=None)
```
在上述代码中,首先读取了`3D_res34_pearson.csv`和`label.csv`文件,然后使用`iloc`方法将`x`中的数据保留从第二列开始的所有列。接着,使用`mifs.MutualInformationFeatureSelector`创建一个互信息特征选择器,并使用`fit`方法对特征进行选择。然后,使用`transform`方法筛选出选择的特征。
在最后部分,我们通过`feature_name`获取了选择的特征名称,并打印输出。然后,将选择的特征存储到`selected_features`变量,并使用`to_csv`方法将其写入到`3D_res34_mrmr.csv`文件中(不包括索引)。
请注意,以上代码假设第一列是特征的标识列,而从第二列开始才是需要进行特征选择的数据列。如果你的数据列不是从第二列开始,你需要根据实际情况修改代码中的索引切片部分。
阅读全文