stm32f103c8t6控制输出pwm波

时间: 2023-09-12 19:00:36 浏览: 249
要控制STM32F103C8T6输出PWM波,需要经过以下步骤: 1. 电路连接:连接STM32F103C8T6的GPIO引脚与PWM输出引脚。使用PWM输出引脚时,需要将GPIO引脚配置为PWM输出模式。 2. 初始化定时器:选择一个定时器作为PWM的源,并对其进行初始化设置。定时器可以选择TIM1、TIM2、TIM3等,根据需求选择合适的定时器。 3. 配置PWM模式:选择合适的PWM工作模式。可以选择PWM模式1、PWM模式2等。对于每个PWM通道,可以设置其占空比、频率和极性等。 4. 配置PWM通道:选择要使用的PWM通道,并配置其相关参数。每个定时器都有多个PWM通道,需要选择并配置合适的通道。 5. 启动定时器:使能所选择的定时器,并启动PWM输出。这样,PWM波形就会在所配置的GPIO引脚上输出。 6. 调整PWM参数:根据实际需求,可以调整PWM波形的频率、占空比等参数。可以通过改变定时器的预分频系数、重装载值等来实现。 值得注意的是,以上步骤仅仅是一个大致的框架,具体的实现方式和代码会因具体的开发环境和需求而有所不同。因此,在实际操作中,需要参考所使用的开发板和开发环境的资料和文档,结合具体需求进行设置和操作。
相关问题

stm32f103c8t6如何输出pwm波

可以使用STM32的定时器来实现PWM波的输出。以下是使用定时器3产生PWM波的示例代码: ``` #include "stm32f10x.h" void PWM_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; TIM_OCInitTypeDef TIM_OCInitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; // 配置TIM3时钟 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); // 配置GPIO RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); // 配置TIM3 TIM_TimeBaseInitStructure.TIM_Period = 19999; // PWM频率为1kHz TIM_TimeBaseInitStructure.TIM_Prescaler = 71; // 分频系数,总线时钟为72MHz TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStructure); // 配置TIM3的通道1为PWM模式 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = 1000; // 占空比为50% TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC1Init(TIM3, &TIM_OCInitStructure); TIM_Cmd(TIM3, ENABLE); // 开启TIM3 } int main(void) { PWM_Configuration(); while (1) { } } ```

STM32F103C8T6单片机输出PWM波

### 回答1: 要在STM32F103C8T6单片机上输出PWM波,可以按照以下步骤进行操作: 1. 配置GPIO为复用功能,并设置对应的复用功能映射 2. 配置定时器,设置PWM模式,并计算出预分频器和计数器的值,使得定时器的时钟频率为所需的PWM波频率 3. 配置定时器的通道,使其输出PWM波形,设置占空比和极性等参数 以下是一个简单的代码示例,演示如何在STM32F103C8T6单片机上输出PWM波: ```c #include "stm32f10x.h" // 定义所需的PWM波频率和占空比 #define PWM_FREQUENCY 1000 // 1kHz #define PWM_DUTY_CYCLE 50 // 50% int main(void) { // 初始化系统时钟 SystemInit(); // 打开GPIOB和TIM3的时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); // 配置GPIOB.0为复用功能 GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); // 配置TIM3为PWM模式 TIM_TimeBaseInitTypeDef TIM_InitStructure; TIM_InitStructure.TIM_Period = (SystemCoreClock / PWM_FREQUENCY) - 1; TIM_InitStructure.TIM_Prescaler = 0; TIM_InitStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_InitStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM3, &TIM_InitStructure); // 配置TIM3通道1为PWM输出 TIM_OCInitTypeDef TIM_OC_InitStructure; TIM_OC_InitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OC_InitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OC_InitStructure.TIM_Pulse = ((SystemCoreClock / PWM_FREQUENCY) * PWM_DUTY_CYCLE / 100) - 1; TIM_OC_InitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC1Init(TIM3, &TIM_OC_InitStructure); // 启动TIM3计数器 TIM_Cmd(TIM3, ENABLE); // 程序循环 while (1) { // do something } } ``` 以上代码示例中,我们使用GPIOB.0作为PWM输出口,以1kHz的频率输出50%的占空比PWM波形。你可以根据具体的需要,修改代码中的频率和占空比参数。 ### 回答2: STM32F103C8T6单片机是一款功能强大的ARM Cortex-M3内核的微控制器,可以实现PWM波的输出。 首先,我们需要在单片机上配置相应的引脚作为PWM输出引脚。通常,该单片机的引脚具有多种功能,包括GPIO(通用输入输出),AF(复用功能),TIM(定时器功能)等。在这个例子中,我们将选择一个TIM定时器引脚作为PWM输出引脚。 其次,我们需要初始化定时器来生成PWM波。首先,我们需要选取一个可用的定时器,然后设置预分频器和周期来确定PWM波的频率。预分频器决定了定时器时钟的频率,周期则决定了PWM波的频率。另外,我们还需要设置占空比,以控制PWM波的高电平时间。占空比可以通过设置定时器的比较寄存器来实现。 最后,我们需要启动定时器,并根据需要设置输出引脚的极性。如果需要反向输出PWM波(即高电平变为低电平),我们可以设置输出比较模式为反向输出。否则,我们可以选择正常输出模式。 简而言之,要在STM32F103C8T6单片机上实现PWM波的输出,我们需要选择一个合适的引脚作为PWM输出引脚,初始化定时器来生成PWM波,并设置输出引脚的极性。通过适当地配置预分频器、周期和占空比,我们可以控制PWM波的频率和高电平时间。 ### 回答3: STM32F103C8T6是一款基于ARM Cortex-M3内核的高性能微控制单元。要实现该单片机输出PWM波,步骤如下: 1. 配置GPIO引脚:选择一个合适的引脚作为PWM输出引脚,并将其对应的GPIO引脚设置为复用模式。 2. 配置定时器:选择一个合适的定时器,配置其工作模式和时钟源,并设置PWM模式。 3. 配置定时器输出比较通道:选择一个合适的比较通道,并设置比较值和输出模式。 4. 设置PWM占空比:通过改变比较值来调整PWM占空比。 5. 启动定时器:使能定时器和比较通道的输出。 具体的代码实现如下: #include "stm32f10x.h" void PWM_Configuration() { // Step 1: 配置GPIO引脚 GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; // 选择引脚为GPIO_Pin_0 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; // 复用推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // 引脚速度为50MHz GPIO_Init(GPIOA, &GPIO_InitStructure); // GPIOA为所选引脚所在的GPIO // Step 2: 配置定时器 TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); // 使能TIM2时钟 TIM_TimeBaseStructure.TIM_Period = 999; // 设置定时器周期为1000-1 TIM_TimeBaseStructure.TIM_Prescaler = 71; // 设置预分频器为7200-1 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; // 向上计数模式 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; // 时钟分频为1 TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); // Step 3: 配置定时器输出比较通道 TIM_OCInitTypeDef TIM_OCInitStructure; TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; // 设置为PWM模式1 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; // 允许输出 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; // 输出极性为高 TIM_OC1Init(TIM2, &TIM_OCInitStructure); // 比较通道1 // Step 4: 设置PWM占空比 TIM_SetCompare1(TIM2, 500); // 设置通道1的比较值为500 // Step 5: 启动定时器 TIM_Cmd(TIM2, ENABLE); } int main() { PWM_Configuration(); while(1) { // 无需其他操作,单片机会一直输出PWM波形 } } 以上就是使用STM32F103C8T6单片机输出PWM波的步骤和代码实现。通过配置GPIO引脚、定时器和比较通道,再调整比较值来设置PWM占空比,最后启动定时器即可实现输出PWM波形。
阅读全文

相关推荐

最新推荐

recommend-type

果壳处理器研究小组(Topic基于RISCV64果核处理器的卷积神经网络加速器研究)详细文档+全部资料+优秀项目+源码.zip

【资源说明】 果壳处理器研究小组(Topic基于RISCV64果核处理器的卷积神经网络加速器研究)详细文档+全部资料+优秀项目+源码.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

JSP学生学籍管理系统(源代码+论文+开题报告+外文翻译+答辩PPT)(2024x5).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

LabVIEW实现NB-IoT通信【LabVIEW物联网实战】

资源说明:https://blog.csdn.net/m0_38106923/article/details/144637354 一分价钱一分货,项目代码可顺利编译运行~
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

数字信号处理全攻略:掌握15个关键技巧,提升你的处理效率

![数字信号处理全攻略:掌握15个关键技巧,提升你的处理效率](https://img-blog.csdnimg.cn/img_convert/ea0cc949288a77f9bc8dde5da6514979.png) # 摘要 数字信号处理作为信息科技领域的重要分支,涵盖了从基础理论到高级应用的广泛内容。本文首先介绍了数字信号处理的基础知识,包括基本概念、时域与频域分析、以及核心算法和理论框架。接着,详细探讨了实现信号采样和量化、滤波器设计、以及信号增强和重建实践技巧。文章进一步深入到高级应用,包括信号压缩技术、多维信号处理,以及人工智能技术在信号处理中的集成。最后,本文评述了数字信号处理