ppo actor cirtic value returns
时间: 2023-10-25 21:03:50 浏览: 85
PPO(Proximal Policy Optimization)是一种用于强化学习的策略优化算法。在PPO算法中,有三个重要的组成部分:Actor(策略网络),Critic(价值网络)和Value(价值函数)。
Actor是一个神经网络模型,用于根据当前状态选择一个动作。它的输入是环境的观测值,通过神经网络计算出每个动作的概率分布,然后根据概率选择一个动作执行。
Critic是另一个神经网络模型,用于评估当前状态的价值。它的输入也是环境的观测值,通过神经网络计算出当前状态的价值估计。
Value是通过对Critic网络进行训练得到的一个价值函数。它用于评估一个状态的价值,即预测从当前状态开始,经过一系列动作后所能获得的累计奖励。在PPO算法中,Value函数的作用是用来计算Advantage(优势),即当前状态的优势相对于平均价值的差异。
PPO算法的核心思想是通过调整Actor的策略网络,使得优势越大的动作的概率增加,优势越小的动作的概率降低,从而提升整体的策略表现。这里的优势是指某个动作相对于其他动作所能带来的额外奖励。通过控制策略的更新步长,可以使得更新过程更加稳定,避免跨过局部最优解。
在PPO算法中,Actor和Critic是相互独立的,但是它们之间的交互可以有效地提升整体的策略优化效果。PPO算法通过反复迭代优化Actor和Critic的参数,不断提升策略的性能,从而实现强化学习任务的优化和控制。
相关问题
ppo算法pytorch
### PPO算法PyTorch实现概述
PPO(Proximal Policy Optimization)是一种高效的策略梯度方法,在连续动作空间的任务上表现尤为出色。该算法通过引入信任区域的概念来稳定更新过程中的策略变化,从而提高学习效率和稳定性[^1]。
### 迷宫环境中应用PPO算法实例
为了更好地理解如何利用PyTorch框架实施PPO算法,可以考虑构建一个简单的迷宫环境作为实验平台。在这个场景下,智能体需要学会找到从起点到终点的最佳路径。此过程中涉及到的关键组件包括但不限于:
- **状态表示**:定义描述当前局面特征的状态向量。
- **行动集合**:规定允许采取的动作列表。
- **奖励机制**:设定用于评估行为优劣的标准体系。
- **网络结构设计**:搭建适合处理上述输入并输出概率分布及价值估计的神经网络架构[^2]。
### 示例代码展示
下面给出一段简化版基于PyTorch的PPO算法核心部分实现示例:
```python
import torch
from torch import nn, optim
import numpy as np
class ActorCritic(nn.Module):
def __init__(self, state_dim, action_dim, hidden_size=64):
super(ActorCritic, self).__init__()
# 定义共享层
self.shared_layer = nn.Sequential(
nn.Linear(state_dim, hidden_size),
nn.ReLU()
)
# 策略网络分支
self.actor_head = nn.Sequential(
nn.Linear(hidden_size, action_dim),
nn.Softmax(dim=-1)
)
# 价值函数网络分支
self.critic_head = nn.Linear(hidden_size, 1)
def forward(self, x):
base_output = self.shared_layer(x)
probs = self.actor_head(base_output)
value = self.critic_head(base_output)
return probs, value
def compute_returns(next_value, rewards, masks, gamma=0.99):
R = next_value
returns = []
for step in reversed(range(len(rewards))):
R = rewards[step] + gamma * R * masks[step]
returns.insert(0, R)
return returns
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = ActorCritic(state_dim=8, action_dim=4).to(device)
optimizer = optim.Adam(model.parameters(), lr=3e-4)
for epoch in range(num_epochs):
log_probs = []
values = []
states = []
actions = []
rewards = []
masks = []
entropy = 0
for _ in range(num_steps_per_update):
# ...省略与环境交互获取数据的过程...
state_tensor = torch.FloatTensor(states[-1]).unsqueeze(0).to(device)
prob, value = model(state_tensor)
dist = Categorical(prob)
action = dist.sample().item()
log_prob = dist.log_prob(torch.tensor([action]))
ent = dist.entropy()
log_probs.append(log_prob)
values.append(value)
rewards.append(reward)
masks.append(mask)
entropy += ent
_, next_value = model(torch.FloatTensor(next_state).unsqueeze(0).to(device))
returns = compute_returns(next_value, rewards, masks)
log_probs = torch.cat(log_probs)
returns = torch.cat(returns).detach()
values = torch.cat(values)
advantage = returns - values
actor_loss = -(log_probs * advantage.detach()).mean()
critic_loss = advantage.pow(2).mean()
loss = actor_loss + 0.5*critic_loss - 0.001*entropy
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
这段代码展示了怎样创建一个结合了演员-评论家模式的`ActorCritic`类以及执行单次迭代所需的主要逻辑流程。注意这里仅提供了一个非常基础的例子,实际部署时可能还需要加入更多细节优化措施,比如调整超参数设置、增加经验回放缓冲区等[^3]。
ppo FrozenLake
### PPO算法在FrozenLake环境中的应用
#### 环境介绍
FrozenLake 是一个经典的强化学习环境,目标是在不掉入冰洞的情况下找到通往宝藏的路径。该环境中存在滑动效应,增加了任务难度。
#### PPO算法概述
近端策略优化 (Proximal Policy Optimization, PPO) 是一种高效的Actor-Critic方法,在保持性能的同时简化了训练过程[^1]。PPO通过裁剪概率比率来防止更新步幅过大,从而提高了模型稳定性和收敛速度。
#### 实现细节
以下是使用Python和PyTorch框架实现PPO算法解决FrozenLake问题的具体代码:
```python
import gymnasium as gym
import torch
import torch.nn as nn
import numpy as np
class ActorCritic(nn.Module):
def __init__(self, state_dim, action_dim):
super(ActorCritic, self).__init__()
self.actor = nn.Sequential(
nn.Linear(state_dim, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear(64, action_dim),
nn.Softmax(dim=-1)
)
self.critic = nn.Sequential(
nn.Linear(state_dim, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear(64, 1)
)
def forward(self, x):
value = self.critic(x)
probs = self.actor(x)
dist = torch.distributions.Categorical(probs=probs)
return dist, value.flatten()
def train(env_name='FrozenLake-v1', max_episodes=5000, update_timestep=2000, K_epochs=80, eps_clip=0.2, gamma=0.99, lr=0.0007):
env = gym.make(env_name, render_mode="ansi", map_name="4x4", is_slippery=True)
state_dim = env.observation_space.n
action_dim = env.action_space.n
policy = ActorCritic(state_dim, action_dim).float()
optimizer = torch.optim.Adam(policy.parameters(), lr=lr)
memory_states = []
memory_actions = []
memory_rewards = []
time_step = 0
for episode in range(max_episodes):
state = env.reset()[0]
while True:
time_step += 1
# Select action according to probability distribution π(a|s;θ)
state_tensor = torch.tensor([state], dtype=torch.float32)
dist, _ = policy(state_tensor)
action = dist.sample().item()
next_state, reward, done, _, info = env.step(action)
# Save experience tuple into replay buffer
memory_states.append(state)
memory_actions.append(action)
memory_rewards.append(reward)
if time_step % update_timestep == 0 or done:
optimize_policy(memory_states, memory_actions, memory_rewards, policy, optimizer, K_epochs, eps_clip, gamma)
# Clear old experiences after updating
del memory_states[:]
del memory_actions[:]
del memory_rewards[:]
state = next_state
if done:
break
if episode % 100 == 0:
print(f'Episode [{episode}/{max_episodes}]')
env.close()
def optimize_policy(states, actions, rewards, policy, optimizer, K_epochs, eps_clip, gamma):
discounted_reward = calculate_discounted_rewards(rewards, gamma)
states = torch.tensor(states, dtype=torch.float32)
actions = torch.tensor(actions, dtype=torch.int64)
discounted_reward = torch.tensor(discounted_reward, dtype=torch.float32)
advantages = compute_advantages(policy, states, discounted_reward)
old_log_probs = evaluate_old_action_probabilities(policy, states, actions)
for _ in range(K_epochs):
new_dist, values = policy(states)
log_probs = new_dist.log_prob(actions)
ratios = torch.exp(log_probs - old_log_probs.detach())
surr1 = ratios * advantages
surr2 = torch.clamp(ratios, 1-eps_clip, 1+eps_clip) * advantages
loss = -torch.min(surr1, surr2) + 0.5*(discounted_reward-values)**2 - 0.01*new_dist.entropy()
optimizer.zero_grad()
loss.mean().backward()
optimizer.step()
def calculate_discounted_rewards(rewards, gamma):
discounted_rewards = []
running_add = 0
for r in reversed(rewards):
running_add = r + gamma * running_add
discounted_rewards.insert(0, running_add)
return normalized(np.array(discounted_rewards))
def compute_advantages(policy, states, returns):
_, values = policy(states)
advantages = returns - values.squeeze(-1)
return (advantages - advantages.mean()) / (advantages.std() + 1e-10)
def evaluate_old_action_probabilities(policy, states, actions):
with torch.no_grad():
dist, _ = policy(states)
log_probs = dist.log_prob(actions)
return log_probs
if __name__ == "__main__":
train()
```
此代码实现了完整的PPO流程,包括但不限于:
- 定义Actor-Critic网络结构;
- 记录状态、动作及奖励信息;
- 使用折扣因子计算累积回报并标准化处理;
- 更新策略参数以最大化预期收益;
阅读全文
相关推荐















