hudi index
时间: 2023-11-14 11:07:39 浏览: 156
Hudi的索引是将hoodiekey映射到文件组(File Group)或者文件ID(File ID)。hoodiekey由recordkey和partitionpath两部分组成。对于Hudi索引的选择策略,可以根据需求选择全局索引或非全局索引。在Flink中,只有一种state based index(和bucket_index),其他索引是Spark的可选配置。而在HBase中,索引本质上是全局索引,可以选择bloom和simple index的全局选项。
相关问题
java使用使用hudi-spark-client创建hudi表并写数据到hudi表中
在Java中使用Hudi的Spark客户端创建Hudi表并写入数据,你可以按照以下步骤进行操作:
1. 首先,确保你已经在项目中添加了Hudi和Spark依赖。你可以在pom.xml文件中添加以下依赖项:
```xml
<dependencies>
<!-- Hudi -->
<dependency>
<groupId>org.apache.hudi</groupId>
<artifactId>hudi-spark-bundle_2.12</artifactId>
<version>0.9.0</version>
</dependency>
<!-- Spark -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>3.1.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.12</artifactId>
<version>3.1.1</version>
</dependency>
</dependencies>
```
2. 在Java中创建SparkSession对象:
```java
import org.apache.spark.sql.SparkSession;
SparkSession spark = SparkSession.builder()
.appName("HudiExample")
.master("local[*]") // 根据实际运行环境设置
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.getOrCreate();
```
3. 创建Hudi表,指定表名、表类型(如COPY_ON_WRITE或MERGE_ON_READ)、键名和分区列:
```java
import org.apache.hudi.DataSourceWriteOptions;
import org.apache.hudi.HoodieDataSourceHelpers;
import org.apache.hudi.config.HoodieWriteConfig;
String tableName = "my_hudi_table";
String basePath = "/path/to/hudi_table";
String primaryKey = "id";
String partitionColumn = "date";
HoodieWriteConfig writeConfig = HoodieWriteConfig.newBuilder().withPath(basePath)
.withSchema(HoodieDataSourceHelpers.createHoodieWriteSchema(schema)) // 设置数据模式
.withParallelism(2, 2) // 设置并行度
.forTable(tableName)
.withIndexConfig(HoodieIndexConfig.newBuilder().withIndexType(HoodieIndex.IndexType.BLOOM).build()) // 设置索引类型为Bloom
.withCompactionConfig(HoodieCompactionConfig.newBuilder().archiveCommitsWith(30, TimeUnit.SECONDS).build()) // 设置30s内自动归档
.build();
HoodieSparkEngineContext context = new HoodieSparkEngineContext(spark.sparkContext());
HoodieTableMetaClient metaClient = HoodieTableMetaClient.builder().setConf(spark.sparkContext().hadoopConfiguration())
.setBasePath(basePath)
.setLoadActiveTimelineOnLoad(true)
.build();
HoodieTable table = HoodieSparkTable.create(writeConfig, context, metaClient);
```
4. 将数据写入Hudi表:
```java
import org.apache.hudi.common.model.HoodieRecord;
// 创建要写入的数据集
List<HoodieRecord> records = Arrays.asList(
new HoodieRecord(new HoodieKey("1", "2021-01-01"), data1),
new HoodieRecord(new HoodieKey("2", "2021-01-02"), data2),
new HoodieRecord(new HoodieKey("3", "2021-01-03"), data3)
);
JavaRDD<HoodieRecord> recordRDD = JavaSparkContext.fromSparkContext(spark.sparkContext()).parallelize(records);
String commitTime = HoodieTestUtils.makeNewCommitTime();
HoodieWriteClient<HoodieRecord> writeClient = new HoodieWriteClient<>(context, writeConfig);
writeClient.startCommit(commitTime);
writeClient.insert(recordRDD, commitTime);
writeClient.commit(commitTime, recordRDD);
```
以上是使用Hudi Spark客户端在Java中创建Hudi表并写入数据的基本步骤。请根据你的实际情况进行调整和扩展。
Hudi写数据,读数据
Hudi是一个用于处理大规模数据的开源库,支持数据的写入和读取。以下是Hudi写入和读取数据的基本过程:
1. 写入数据:Hudi支持多种数据源,包括HDFS、S3、Azure Storage等。首先需要创建一个HoodieWriteClient对象,指定要写入的数据源和表名。然后可以使用HoodieWriteClient的write方法写入数据,同时可以指定写入数据的格式、分区键等。例如:
```java
HoodieWriteConfig config = HoodieWriteConfig.newBuilder()
.withPath("hdfs://path/to/hudi/table")
.withParallelism(2, 2)
.withBulkInsertParallelism(4)
.withSchema(schema)
.forTable("my_table")
.withIndexConfig(HoodieIndexConfig.newBuilder().withIndexType(HoodieIndex.IndexType.BLOOM).build())
.build();
HoodieWriteClient client = new HoodieWriteClient(jsc, config);
JavaRDD<HoodieRecord> records = ... // 从其他数据源读取数据
client.startCommit();
JavaRDD<WriteStatus> writeStatuses = client.insert(records, commitTime);
client.commit(commitTime, writeStatuses);
```
2. 读取数据:Hudi支持多种读取方式,包括全表扫描、增量读取等。首先需要创建一个HoodieReadClient对象,指定要读取的数据源和表名。然后可以使用HoodieReadClient的方法读取数据,例如:
```java
HoodieReadClient readClient = new HoodieReadClient(jsc, basePath);
JavaRDD<HoodieRecord> records = readClient.readRecords();
```
可以通过HoodieRecord对象获取每条记录的key、value、partition等信息。此外,Hudi还支持使用索引加速数据读取,可以通过HoodieIndex对象创建索引,例如:
```java
HoodieIndex index = HoodieIndex.createIndex(config, jsc);
JavaRDD<HoodieRecord> records = index.tagLocation(records);
```
以上是Hudi写入和读取数据的基本过程,具体实现方式可以根据具体业务需要进行调整。
阅读全文