# prediction result = model.predict(mat) predict_class = np.argmax(result) print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_class)], result[0][predict_class]) plt.title(print_res) for i in range(len(result[0])): print("class: {:10} prob: {:.3}".format(class_indict[str(i)], result[0][i])) # del mat_data,mat,json_path,class_indict,model,weights_path,result,predict_class,print_res,i
时间: 2024-04-04 10:31:24 浏览: 115
这段代码是用来进行模型预测的,其中:
- `result = model.predict(mat)` 表示使用模型对输入图像进行预测,得到一个预测结果。其中 `mat` 是输入的图像数据,`result` 是一个 numpy 数组,表示预测结果。
- `predict_class = np.argmax(result)` 表示找到预测结果中概率最高的类别,即预测的类别。
- `print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_class)], result[0][predict_class])` 表示将预测结果格式化成一个字符串,包含预测的类别和对应的概率。
- `plt.title(print_res)` 表示设置图像的标题,将预测结果显示在标题上。
- `for i in range(len(result[0])):` 表示遍历预测结果中的每一个类别,打印每个类别的名称和对应的概率。
- 最后一行注释掉了,表示将一些不再需要的变量删除,以释放内存。
如果您需要对模型进行批量预测,可以将输入图像打包成一个 batch,然后使用 `model.predict` 方法对整个 batch 进行预测。另外,如果需要可视化预测结果,可以使用 matplotlib 等库来绘制图像。
相关问题
import os import json import torch from PIL import Image from torchvision import transforms from model import resnet34 def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") data_transform = transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # load image # 指向需要遍历预测的图像文件夹 imgs_root = "../dataset/val" assert os.path.exists(imgs_root), f"file: '{imgs_root}' dose not exist." # 读取指定文件夹下所有jpg图像路径 img_path_list = [os.path.join(imgs_root, i) for i in os.listdir(imgs_root) if i.endswith(".jpg")] # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), f"file: '{json_path}' dose not exist." json_file = open(json_path, "r") class_indict = json.load(json_file) # create model model = resnet34(num_classes=16).to(device) # load model weights weights_path = "./newresNet34.pth" assert os.path.exists(weights_path), f"file: '{weights_path}' dose not exist." model.load_state_dict(torch.load(weights_path, map_location=device)) # prediction model.eval() batch_size = 8 # 每次预测时将多少张图片打包成一个batch with torch.no_grad(): for ids in range(0, len(img_path_list) // batch_size): img_list = [] for img_path in img_path_list[ids * batch_size: (ids + 1) * batch_size]: assert os.path.exists(img_path), f"file: '{img_path}' dose not exist." img = Image.open(img_path) img = data_transform(img) img_list.append(img) # batch img # 将img_list列表中的所有图像打包成一个batch batch_img = torch.stack(img_list, dim=0) # predict class output = model(batch_img.to(device)).cpu() predict = torch.softmax(output, dim=1) probs, classes = torch.max(predict, dim=1) for idx, (pro, cla) in enumerate(zip(probs, classes)): print("image: {} class: {} prob: {:.3}".format(img_path_list[ids * batch_size + idx], class_indict[str(cla.numpy())], pro.numpy())) if __name__ == '__main__': main()
这段代码实现了导入必要的包和模块,包括操作系统、JSON、PyTorch、PIL及其转换模块、还有定义的resnet34模型。在主函数中,首先根据可用GPU情况使用cuda或cpu作为设备,然后定义数据的处理流程,包括缩放、剪裁、转换为Tensor并进行标准化。
import pandas as pd from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense from keras.models import load_model model = load_model('model.h5') # 读取Excel文件 data = pd.read_excel('D://数据1.xlsx', sheet_name='4') # 把数据分成输入和输出 X = data.iloc[:, 0:5].values y = data.iloc[:, 0:5].values # 对输入和输出数据进行归一化 scaler_X = MinMaxScaler(feature_range=(0, 6)) X = scaler_X.fit_transform(X) scaler_y = MinMaxScaler(feature_range=(0, 6)) y = scaler_y.fit_transform(y) # 将数据集分成训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 创建神经网络模型 model = Sequential() model.add(Dense(units=4, input_dim=4, activation='relu')) model.add(Dense(units=36, activation='relu')) model.add(Dense(units=4, activation='relu')) model.add(Dense(units=4, activation='linear')) # 编译模型 model.compile(loss='mean_squared_error', optimizer='sgd') # 训练模型 model.fit(X_train, y_train, epochs=100, batch_size=1257) # 评估模型 score = model.evaluate(X_test, y_test, batch_size=30) print('Test loss:', score) # 使用训练好的模型进行预测 X_test_scaled = scaler_X.transform(X_test) y_pred = model.predict(X_test_scaled) # 对预测结果进行反归一化 y_pred_int = scaler_y.inverse_transform(y_pred).round().astype(int) # 构建带有概率的预测结果 y_pred_prob = pd.DataFrame(y_pred_int, columns=data.columns[:4]) mse = ((y_test - y_pred) ** 2).mean(axis=None) y_pred_prob['Probability'] = 1 / (1 + mse - ((y_pred_int - y_test) ** 2).mean(axis=None)) # 过滤掉和值超过6或小于6的预测值 y_pred_filtered = y_pred_prob[(y_pred_prob.iloc[:, :4].sum(axis=1) == 6)] # 去除重复的行 y_pred_filtered = y_pred_filtered.drop_duplicates() # 重新计算低于1.2的 Probability 值 low_prob_indices = y_pred_filtered[y_pred_filtered['Probability'] < 1.5].index for i in low_prob_indices: y_pred_int_i = y_pred_int[i] y_test_i = y_test[i] mse_i = ((y_test_i - y_pred_int_i) ** 2).mean(axis=None) new_prob_i = 1 / (1 + mse_i - ((y_pred_int_i - y_test_i) ** 2).mean(axis=None)) y_pred_filtered.at[i, 'Probability'] = new_prob_i # 打印带有概率的预测结果 print('Predicted values with probabilities:') print(y_pred_filtered)这段代码有问题,你帮忙改一下
经过仔细查看代码,我发现问题出在第7行和第8行。它们应该分别是:
```python
X = data.iloc[:, :4].values
y = data.iloc[:, 4].values.reshape(-1, 1)
```
这样就可以将输入数据和输出数据正确地分离开来了。同时,第37行的 `y_test` 应该是 `y_test_scaled`。修改后的代码如下:
```python
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Dense
from keras.models import load_model
model = load_model('model.h5')
# 读取Excel文件
data = pd.read_excel('D://数据1.xlsx', sheet_name='4')
# 把数据分成输入和输出
X = data.iloc[:, :4].values
y = data.iloc[:, 4].values.reshape(-1, 1)
# 对输入和输出数据进行归一化
scaler_X = MinMaxScaler(feature_range=(0, 6))
X = scaler_X.fit_transform(X)
scaler_y = MinMaxScaler(feature_range=(0, 6))
y = scaler_y.fit_transform(y)
# 将数据集分成训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 使用训练好的模型进行预测
X_test_scaled = scaler_X.transform(X_test)
y_test_scaled = scaler_y.transform(y_test)
y_pred_scaled = model.predict(X_test_scaled)
# 对预测结果进行反归一化
y_pred = scaler_y.inverse_transform(y_pred_scaled)
# 构建带有概率的预测结果
y_pred_prob = pd.DataFrame(y_pred, columns=['Prediction'])
mse = ((y_test_scaled - y_pred_scaled) ** 2).mean(axis=None)
y_pred_prob['Probability'] = 1 / (1 + mse - ((y_pred_scaled - y_test_scaled) ** 2).mean(axis=None))
# 过滤掉和值超过6或小于1的预测值
y_pred_filtered = y_pred_prob[(y_pred_prob.iloc[:, :1].sum(axis=1) <= 6) & (y_pred_prob.iloc[:, :1].sum(axis=1) >= 1)]
# 去除重复的行
y_pred_filtered = y_pred_filtered.drop_duplicates()
# 重新计算低于1.2的 Probability 值
low_prob_indices = y_pred_filtered[y_pred_filtered['Probability'] < 1.2].index
for i in low_prob_indices:
y_pred_i = y_pred[i]
y_test_i = y_test[i]
mse_i = ((y_test_i - y_pred_i) ** 2).mean(axis=None)
new_prob_i = 1 / (1 + mse_i - ((y_pred_i - y_test_i) ** 2).mean(axis=None))
y_pred_filtered.at[i, 'Probability'] = new_prob_i
# 打印带有概率的预测结果
print('Predicted values with probabilities:')
print(y_pred_filtered)
```
请注意,这段代码需要在正确的环境中运行,且文件路径需要根据实际情况修改。
阅读全文
相关推荐
















