用python语言Prim算法编写程序实现连通无向图的最小生成树,并测试
时间: 2023-06-16 10:03:18 浏览: 88
基于Prim算法实现的最小生成树
好的,下面是Prim算法的Python实现,以及一个测试用例:
```python
import sys
class Graph:
def __init__(self, vertices):
self.V = vertices
self.graph = [[0 for column in range(vertices)]
for row in range(vertices)]
def printMST(self, parent):
print("Edge \tWeight")
for i in range(1, self.V):
print(parent[i], "-", i, "\t", self.graph[i][parent[i]])
def minKey(self, key, mstSet):
min = sys.maxsize
for v in range(self.V):
if key[v] < min and mstSet[v] == False:
min = key[v]
min_index = v
return min_index
def primMST(self):
key = [sys.maxsize] * self.V
parent = [None] * self.V
key[0] = 0
mstSet = [False] * self.V
parent[0] = -1
for cout in range(self.V):
u = self.minKey(key, mstSet)
mstSet[u] = True
for v in range(self.V):
if self.graph[u][v] > 0 and mstSet[v] == False and key[v] > self.graph[u][v]:
key[v] = self.graph[u][v]
parent[v] = u
self.printMST(parent)
g = Graph(5)
g.graph = [[0, 2, 0, 6, 0],
[2, 0, 3, 8, 5],
[0, 3, 0, 0, 7],
[6, 8, 0, 0, 9],
[0, 5, 7, 9, 0]]
g.primMST()
```
上面的代码实现了Prim算法,用于求解连通无向图的最小生成树。测试用例是一个5个顶点的无向图,其边权如下:
```
2 3
0---1---2
|\ | /|
| \ | / |
6 8 7 9
| / | \ |
|/ | \|
3 5 7
```
输出结果是:
```
Edge Weight
0 - 1 2
1 - 2 3
0 - 3 6
1 - 4 5
```
这是最小生成树的边集合,其总权重为16。
阅读全文