python模拟退火算法实例
时间: 2023-11-06 08:08:10 浏览: 100
好的,以下是一个简单的 Python 模拟退火算法实例:
```python
import math
import random
def simulated_annealing(cost_function, initial_solution, temperature, cooling_rate):
current_solution = initial_solution
best_solution = current_solution
while temperature > 1:
neighbor = get_neighbor(current_solution)
current_cost = cost_function(current_solution)
neighbor_cost = cost_function(neighbor)
if neighbor_cost < current_cost:
current_solution = neighbor
if neighbor_cost < cost_function(best_solution):
best_solution = neighbor
else:
delta = neighbor_cost - current_cost
acceptance_probability = math.exp(-delta / temperature)
if random.random() < acceptance_probability:
current_solution = neighbor
temperature *= cooling_rate
return best_solution
def get_neighbor(solution):
# 生成邻居解
pass
def cost_function(solution):
# 计算解的成本
pass
# 示例用法
initial_solution = [0, 0, 0, 0, 0]
temperature = 100
cooling_rate = 0.95
best_solution = simulated_annealing(cost_function, initial_solution, temperature, cooling_rate)
print(best_solution)
```
其中,`cost_function` 函数用于计算解的成本,`get_neighbor` 函数用于生成邻居解。在 `simulated_annealing` 函数中,我们使用当前温度和冷却速率来控制算法的迭代次数和搜索范围。
阅读全文