self.layers += [nn.Linear(128, np.prod(action_shape))]
时间: 2024-04-12 14:33:34 浏览: 54
这行代码是将一个具有128个输入特征和动作形状(action_shape)中所有元素乘积个输出特征的全连接层(nn.Linear)添加到模型的层列表(self.layers)中。
nn.Linear(128, np.prod(action_shape)) 表示创建一个具有128个输入特征和动作形状(action_shape)中所有元素乘积个输出特征的全连接层。
通过将这个层添加到模型的层列表中,你可以在模型的前向传播过程中依次应用它。这个全连接层将接收大小为128的输入并输出与动作形状(action_shape)中所有元素乘积相等的特征数量。
相关问题
self.layers += [nn.Linear(256, 256), nn.ReLU(inplace=True)]
这行代码是将一个具有256个输入特征和256个输出特征的全连接层(nn.Linear)和一个ReLU激活函数(nn.ReLU)添加到模型的层列表中(self.layers)。
nn.Linear(256, 256) 表示创建一个具有256个输入特征和256个输出特征的全连接层。
nn.ReLU(inplace=True) 表示创建一个ReLU激活函数,并将 inplace 参数设置为 True。这将使激活函数直接在原地修改输入张量,而不需要额外的内存。
通过将这两个层添加到模型的层列表中,你可以在模型的前向传播过程中依次应用它们。
def __init__(self, hyp): super(DAGMM, self).__init__() layers = [] layers += [nn.Linear(hyp['input_dim'],hyp['hidden1_dim'])] layers += [nn.Tanh()] layers += [nn.Linear(hyp['hidden1_dim'],hyp['hidden2_dim'])] layers += [nn.Tanh()] layers += [nn.Linear(hyp['hidden2_dim'],hyp['hidden3_dim'])] layers += [nn.Tanh()] layers += [nn.Linear(hyp['hidden3_dim'],hyp['zc_dim'])]
这段代码实现了一个三层的全连接神经网络,包含了输入层、三个隐藏层和输出层。其中输入层大小为`hyp['input_dim']`,隐藏层1、2、3的大小分别为`hyp['hidden1_dim']`、`hyp['hidden2_dim']`、`hyp['hidden3_dim']`,输出层大小为`hyp['zc_dim']`。每个隐藏层都使用了tanh激活函数,输出层没有使用激活函数。该神经网络用于实现DAGMM (Deep Autoencoding Gaussian Mixture Model),是一种无监督的异常检测算法。
阅读全文
相关推荐
















