c++梯度算子进行边缘检测
时间: 2023-07-04 12:25:06 浏览: 128
C++梯度算子可以用于边缘检测。常用的算子有Sobel、Prewitt、Roberts等。
以Sobel算子为例,它是一种基于差分的算子,可以通过求图像灰度值在x和y方向上的一阶导数来计算梯度。其具体操作步骤如下:
1. 对图像进行灰度化处理,将彩色图像转化为灰度图像。
2. 对灰度图像进行高斯滤波,以平滑图像并减少噪声。
3. 计算图像在x和y方向上的梯度,可以使用以下两个模板:
Gx = [-1 0 1] Gy = [-1 -2 -1]
[-2 0 2] [ 0 0 0]
[-1 0 1] [ 1 2 1]
计算方法为将模板与图像进行卷积运算,得到x和y方向上的梯度值。
4. 计算图像的梯度幅值和方向,可以使用以下公式:
Gradient_magnitude = sqrt(Gx^2 + Gy^2)
Gradient_direction = atan(Gy / Gx)
其中,atan表示反正切函数。
5. 对梯度幅值进行非极大值抑制,以保留边缘的细节信息。
6. 对抑制后的图像进行双阈值处理,将像素点分为强边缘、弱边缘和非边缘三类。
7. 使用连接分析算法对弱边缘进行连接,以获取完整的边缘信息。
以上就是利用C++梯度算子进行边缘检测的基本步骤。
相关问题
c++/matlab编程实现 canny 算子进行边缘检测。
C++代码实现:
```cpp
#include <iostream>
#include <cmath>
#include <algorithm>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
// 高斯滤波
void gaussianBlur(Mat &image, int ksize, double sigma) {
Mat kernel = getGaussianKernel(ksize, sigma, CV_64F);
sepFilter2D(image, image, -1, kernel, kernel);
}
// sobel 算子计算水平方向和垂直方向梯度
void sobel(Mat &image, Mat &grad_x, Mat &grad_y) {
Sobel(image, grad_x, CV_32F, 1, 0, 3);
Sobel(image, grad_y, CV_32F, 0, 1, 3);
}
// 计算梯度幅值和方向
void gradient(Mat &grad_x, Mat &grad_y, Mat &grad_mag, Mat &grad_dir) {
cartToPolar(grad_x, grad_y, grad_mag, grad_dir, true);
}
// 非最大抑制
void nonMaximumSuppression(Mat &grad_mag, Mat &grad_dir, Mat &grad_nms) {
float pi = 3.14159265358979323846;
grad_nms = Mat::zeros(grad_mag.size(), grad_mag.type());
for (int i = 1; i < grad_mag.rows - 1; i++) {
for (int j = 1; j < grad_mag.cols - 1; j++) {
float angle = grad_dir.at<float>(i, j);
float m1, m2;
// 比较梯度方向上的两个像素
if (angle < pi / 4 && angle >= -pi / 4) {
m1 = grad_mag.at<float>(i, j - 1);
m2 = grad_mag.at<float>(i, j + 1);
} else if (angle < -pi / 4 && angle >= -3 * pi / 4) {
m1 = grad_mag.at<float>(i - 1, j);
m2 = grad_mag.at<float>(i + 1, j);
} else if (angle < 3 * pi / 4 && angle >= pi / 4) {
m1 = grad_mag.at<float>(i - 1, j - 1);
m2 = grad_mag.at<float>(i + 1, j + 1);
} else {
m1 = grad_mag.at<float>(i - 1, j + 1);
m2 = grad_mag.at<float>(i + 1, j - 1);
}
// 如果当前像素的梯度值不是最大值,就将其设为 0
if (grad_mag.at<float>(i, j) < m1 || grad_mag.at<float>(i, j) < m2) {
grad_nms.at<float>(i, j) = 0;
} else {
grad_nms.at<float>(i, j) = grad_mag.at<float>(i, j);
}
}
}
}
// 双阈值处理
void doubleThreshold(Mat &grad_nms, Mat &grad_thres, float low_threshold, float high_threshold) {
grad_thres = Mat::zeros(grad_nms.size(), grad_nms.type());
for (int i = 0; i < grad_nms.rows; i++) {
for (int j = 0; j < grad_nms.cols; j++) {
float val = grad_nms.at<float>(i, j);
if (val > high_threshold) {
grad_thres.at<float>(i, j) = 255;
} else if (val > low_threshold) {
grad_thres.at<float>(i, j) = 127;
}
}
}
}
// 连通域分析
void connectedComponents(Mat &grad_thres, Mat &edges, int min_size) {
edges = Mat::zeros(grad_thres.size(), grad_thres.type());
vector<vector<Point>> contours;
findContours(grad_thres, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
for (int i = 0; i < contours.size(); i++) {
if (contours[i].size() < min_size) {
continue;
}
for (int j = 0; j < contours[i].size(); j++) {
Point p = contours[i][j];
edges.at<float>(p) = 255;
}
}
}
int main() {
Mat image = imread("test.jpg", IMREAD_GRAYSCALE);
if (image.empty()) {
cerr << "Failed to open image file!" << endl;
return -1;
}
// 高斯滤波
Mat blurred;
gaussianBlur(image, 5, 1.4);
// sobel 算子计算梯度
Mat grad_x, grad_y;
sobel(blurred, grad_x, grad_y);
// 计算梯度幅值和方向
Mat grad_mag, grad_dir;
gradient(grad_x, grad_y, grad_mag, grad_dir);
// 非最大抑制
Mat grad_nms;
nonMaximumSuppression(grad_mag, grad_dir, grad_nms);
// 双阈值处理
float low_threshold = 35, high_threshold = 70;
Mat grad_thres;
doubleThreshold(grad_nms, grad_thres, low_threshold, high_threshold);
// 连通域分析
int min_size = 10;
Mat edges;
connectedComponents(grad_thres, edges, min_size);
// 显示结果
namedWindow("Original", WINDOW_AUTOSIZE);
imshow("Original", image);
namedWindow("Edges", WINDOW_AUTOSIZE);
imshow("Edges", edges);
waitKey(0);
return 0;
}
```
Matlab代码实现:
```matlab
function edges = canny(image, low_threshold, high_threshold, min_size)
% 高斯滤波
blurred = imgaussfilt(image, 1.4);
% sobel 算子计算梯度
[grad_x, grad_y] = gradient(double(blurred));
% 计算梯度幅值和方向
grad_mag = hypot(grad_x, grad_y);
grad_dir = atan2(grad_y, grad_x);
% 非最大抑制
grad_nms = non_maximum_suppression(grad_mag, grad_dir);
% 双阈值处理
grad_thres = double_threshold(grad_nms, low_threshold, high_threshold);
% 连通域分析
edges = connected_components(grad_thres, min_size);
end
function grad_nms = non_maximum_suppression(grad_mag, grad_dir)
[rows, cols] = size(grad_mag);
grad_nms = zeros(rows, cols);
pi = 3.14159265358979323846;
for i = 2 : rows - 1
for j = 2 : cols - 1
angle = grad_dir(i, j);
if angle < pi / 4 && angle >= -pi / 4
m1 = grad_mag(i, j - 1);
m2 = grad_mag(i, j + 1);
elseif angle < -pi / 4 && angle >= -3 * pi / 4
m1 = grad_mag(i - 1, j);
m2 = grad_mag(i + 1, j);
elseif angle < 3 * pi / 4 && angle >= pi / 4
m1 = grad_mag(i - 1, j - 1);
m2 = grad_mag(i + 1, j + 1);
else
m1 = grad_mag(i - 1, j + 1);
m2 = grad_mag(i + 1, j - 1);
end
if grad_mag(i, j) < m1 || grad_mag(i, j) < m2
grad_nms(i, j) = 0;
else
grad_nms(i, j) = grad_mag(i, j);
end
end
end
end
function grad_thres = double_threshold(grad_nms, low_threshold, high_threshold)
[rows, cols] = size(grad_nms);
grad_thres = zeros(rows, cols);
for i = 1 : rows
for j = 1 : cols
val = grad_nms(i, j);
if val > high_threshold
grad_thres(i, j) = 255;
elseif val > low_threshold
grad_thres(i, j) = 127;
end
end
end
end
function edges = connected_components(grad_thres, min_size)
% 取整数类型
grad_thres = uint8(grad_thres);
% 连通域分析
cc = bwconncomp(grad_thres);
num_pixels = cellfun(@numel, cc.PixelIdxList);
% 标记连通域是否符合条件
labels = zeros(size(grad_thres));
for i = 1 : cc.NumObjects
if num_pixels(i) < min_size
continue
end
labels(cc.PixelIdxList{i}) = 1;
end
% 输出边缘图像
edges = uint8(labels) * 255;
end
```
以上代码均实现了高斯滤波、sobel算子计算梯度、计算梯度幅值和方向、非最大抑制、双阈值处理和连通域分析,可以实现 Canny 算子进行边缘检测。
canny算子边缘检测c++
Canny算子是一种经典的边缘检测算法,它可以有效地识别图像中的边缘。Canny算子的原理是通过计算图像梯度来检测边缘,并利用非极大值抑制和双阈值提取来精确地定位边缘。
Canny算子的具体步骤包括:
1. 去噪:首先,对图像进行高斯滤波以去除噪声,这有助于减少错误的边缘检测。
2. 计算梯度:然后,使用Sobel算子计算图像的梯度幅值和方向。梯度幅值表示图像的变化率,梯度方向表示边缘的方向。
3. 非极大值抑制:接下来,对梯度幅值图进行非极大值抑制,保留局部梯度最大值处的像素点,以细化边缘。
4. 双阈值提取:然后,根据设定的高阈值和低阈值,将梯度幅值图像分为强边缘和弱边缘。强边缘像素被确定为最终边缘,而弱边缘像素需要进一步判断是否连接到强边缘。
5. 边缘连接:最后,使用边缘连接算法,将弱边缘与强边缘连接起来,形成完整的边缘。
阅读全文