创建如下的二叉树。用栈完成二叉树的先序遍历。通过递归的方式求此二叉树的叶子节点个数与深度。

时间: 2023-04-22 16:01:35 浏览: 82
二叉树: ``` 1 / \ 2 3 / \ / \ 4 5 6 7 ``` 先序遍历结果为:1 2 4 5 3 6 7 递归求叶子节点个数为:4,深度为:3
相关问题

用c语言建立一棵二叉树,实现一下功能 先序遍历 中序遍历 后序遍历 求二叉树的深度 求二叉树叶子结点个数

好的,我会尽力回答你关于C语言建立二叉树的问题。 在C语言中,可以使用结构体来定义二叉树节点的结构,包括其左右子节点指针和数据值等。以下是示例代码: ``` struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; }; ``` 接下来,我们可以使用递归的方式来遍历二叉树并实现相关功能,具体代码如下: ``` // 建立二叉树 struct TreeNode* buildTree(int* preorder, int preStart, int preEnd, int* inorder, int inStart, int inEnd) { if (preStart > preEnd || inStart > inEnd) { return NULL; } struct TreeNode* root = (struct TreeNode*)malloc(sizeof(struct TreeNode)); root->val = preorder[preStart]; int inIndex = 0; // 找到根节点在中序遍历中的索引位置 for (int i = inStart; i <= inEnd; i++) { if (inorder[i] == root->val) { inIndex = i; break; } } root->left = buildTree(preorder, preStart + 1, preStart + inIndex - inStart, inorder, inStart, inIndex - 1); root->right = buildTree(preorder, preStart + inIndex - inStart + 1, preEnd, inorder, inIndex + 1, inEnd); return root; } // 先序遍历 void preorderTraversal(struct TreeNode* root) { if (root == NULL) { return; } printf("%d ", root->val); preorderTraversal(root->left); preorderTraversal(root->right); } // 中序遍历 void inorderTraversal(struct TreeNode* root) { if (root == NULL) { return; } inorderTraversal(root->left); printf("%d ", root->val); inorderTraversal(root->right); } // 后序遍历 void postorderTraversal(struct TreeNode* root) { if (root == NULL) { return; } postorderTraversal(root->left); postorderTraversal(root->right); printf("%d ", root->val); } // 求二叉树的深度 int maxDepth(struct TreeNode* root) { if (root == NULL) { return 0; } int leftDepth = maxDepth(root->left); int rightDepth = maxDepth(root->right); return fmax(leftDepth, rightDepth) + 1; } // 求二叉树叶子节点个数 int countLeaves(struct TreeNode* root) { if (root == NULL) { return 0; } if (root->left == NULL && root->right == NULL) { return 1; } return countLeaves(root->left) + countLeaves(root->right); } int main() { int preorder[] = {1, 2, 4, 5, 3, 6}; int inorder[] = {4, 2, 5, 1, 3, 6}; int n = sizeof(preorder) / sizeof(int); struct TreeNode* root = buildTree(preorder, 0, n - 1, inorder, 0, n - 1); printf("先序遍历:"); preorderTraversal(root); printf("\n中序遍历:"); inorderTraversal(root); printf("\n后序遍历:"); postorderTraversal(root); printf("\n二叉树深度:%d\n", maxDepth(root)); printf("叶子节点个数:%d\n", countLeaves(root)); return 0; } ``` 希望这些代码和功能对您有所帮助!

用代码非递归创建二叉树,并且实现非递归先序遍历和非递归中序遍历

下面是用 Python 语言实现的非递归创建二叉树和非递归遍历的代码示例: ```python class TreeNode: def __init__(self, val): self.val = val self.left = None self.right = None def createTree(nums): if not nums: return None root = TreeNode(nums[0]) stack = [root] i = 1 while i < len(nums): node = TreeNode(nums[i]) if not stack: break if stack[-1].left is None: stack[-1].left = node else: stack[-1].right = node stack.pop() stack.append(node) i += 1 return root def preorderTraversal(root): if not root: return [] result = [] stack = [root] while stack: node = stack.pop() result.append(node.val) if node.right: stack.append(node.right) if node.left: stack.append(node.left) return result def inorderTraversal(root): if not root: return [] result = [] stack = [] node = root while stack or node: while node: stack.append(node) node = node.left node = stack.pop() result.append(node.val) node = node.right return result ``` 这里我们用到了栈来实现非递归遍历。在创建二叉树时,我们用一个栈来保存节点,如果当前节点的左子树为空,就将其作为左子树;否则,看是否有右兄弟节点,如果有,就将当前节点弹出栈,并将其右兄弟节点作为新的当前节点;如果没有,就继续将新节点作为左子树。 在先序遍历中,我们将根节点压入栈中,然后弹出栈顶元素,将其值加入结果数组中,再将其右子节点、左子节点依次压入栈中。在中序遍历中,我们需要一直将左子节点压入栈中,直到没有左子节点了,就取出栈顶元素,将其值加入结果数组中,并将当前节点设置为其右子节点,继续进行遍历。

相关推荐

最新推荐

recommend-type

C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法

C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法 本文主要介绍了C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法,涉及C++二叉树的定义、遍历、统计相关操作技巧。 一、二叉树的定义 在...
recommend-type

通过先序遍历和中序遍历后的序列还原二叉树(实现方法)

通过先序遍历和中序遍历后的序列还原二叉树的基本思想是:首先,通过先序遍历确认根节点,然后在中序遍历中找到根节点的位置,从而确定左子树和右子树的节点。接着,重复上述步骤,直到找到所有子节点为止。 下面是...
recommend-type

用Python实现二叉树、二叉树非递归遍历及绘制的例子

在Python中实现二叉树,通常涉及到节点定义、遍历算法和...通过以上代码,你可以实现二叉树的非递归遍历,并以图形化方式展示二叉树结构。这种方法对于理解和操作二叉树非常有帮助,特别是对于学习数据结构的人来说。
recommend-type

建立二叉树,并输出二叉树的先序,中序和后序遍历序列,以及二叉树的叶子数

[问题描述] 建立二叉树,并输出二叉树的先序,中序和后序遍历序列,以及二叉树的叶子数。 [基本要求] 要求根据读取的元素建立二叉树,能输出各种遍历。 [实现提示] 可通过输入带空格的前序序列建立二叉链表。
recommend-type

基于stm32+FreeRTOS+ESP8266的实时天气系统

【作品名称】:基于stm32+FreeRTOS+ESP8266的实时天气系统 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:项目简介 基于stm32F407+FreeRTOS+ESP8266的实时气象站系统,通过物联网技术实时读取天气情况,温度以及自带了一个计时功能。 所需设备 stm32F407,淘晶驰串口屏,ESP8266; 串口屏连接串口3,ESP8266连接串口2,串口1用于打印状态。 实现过程 通过对ESP8266发送AT指令,从服务器读取天气的json数据,然后通过cJSON解码数据,最后FreeRTOS对任务进行管理(FreeRTOS和cJSON有冲突,需要将cJSON申请内存空间的函数替换成FreeRTOS申请内存的函数,每次解码后,一定要释放内存,否则解码会卡死,而且需要把Heap_size设置稍微大一点,推荐设置为4096)
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。