train_data.drop(['Cover_Type'], axis=1)什么作用

时间: 2024-04-04 14:29:33 浏览: 18
`train_data.drop(['Cover_Type'], axis=1)` 的作用是从 Pandas DataFrame(数据框)中删除名为 `Cover_Type` 的列,并返回一个新的数据框,原始数据框不受影响。 具体地说,`drop` 方法用于删除指定的行或列,第一个参数是要删除的行或列的名称,第二个参数 `axis=1` 表示删除列。在这个例子中,`Cover_Type` 是我们不需要的目标变量,所以我们要将它从训练数据中删除,以便将其与特征变量分开,以准备训练机器学习模型。
相关问题

cols = train_corr.nlargest(k, 'target')['target'].index cm = np.corrcoef(train_data[cols].values.T) hm = sns.heatmap(train_data[cols].corr(),annot=True,square=True) threshold = 0.5 corrmat = train_data.corr() top_corr_features = corrmat.index[abs(corrmat["target"])>threshold] plt.figure(figsize=(10,10)) g = sns.heatmap(train_data[top_corr_features].corr(),annot=True,cmap="RdYlGn") corr_matrix = data_train1.corr().abs() drop_col=corr_matrix[corr_matrix["target"]<threshold].indextrain_x = train_data.drop(['target'], axis=1) train_x = train_data.drop(['target'], axis=1) data_all = pd.concat([train_x,test_data]) data_all.drop(drop_columns,axis=1,inplace=True) data_all.head() cols_numeric=list(data_all.columns) def scale_minmax(col): return (col-col.min())/(col.max()-col.min()) data_all[cols_numeric] = data_all[cols_numeric].apply(scale_minmax,axis=0) data_all[cols_numeric].describe() 解释每一句代码

1. `cols = train_corr.nlargest(k, 'target')['target'].index`:这行代码是找到与目标变量('target')相关性最高的k个特征,然后返回这些特征的列名,并将其存储在cols变量中。 2. `cm = np.corrcoef(train_data[cols].values.T)`:这行代码使用numpy库中的corrcoef函数来计算cols变量中特征之间的相关系数矩阵,并将其存储在cm变量中。 3. `hm = sns.heatmap(train_data[cols].corr(),annot=True,square=True)`:这行代码使用seaborn库中的heatmap函数来绘制相关系数矩阵的热力图,并将其存储在hm变量中。annot=True表示在热力图中显示每个格子的数值,square=True表示将每个格子绘制成正方形。 4. `threshold = 0.5`:这行代码设置相关系数的阈值为0.5。 5. `corrmat = train_data.corr()`:这行代码计算训练数据集中每个特征之间的相关系数矩阵,并将其存储在corrmat变量中。 6. `top_corr_features = corrmat.index[abs(corrmat["target"])>threshold]`:这行代码找到与目标变量相关性绝对值大于阈值的特征,并将这些特征的列名存储在top_corr_features变量中。 7. `plt.figure(figsize=(10,10))`:这行代码创建一个大小为10x10的新图形。 8. `g = sns.heatmap(train_data[top_corr_features].corr(),annot=True,cmap="RdYlGn")`:这行代码使用seaborn库中的heatmap函数来绘制与目标变量相关性绝对值大于阈值的特征之间的相关系数矩阵的热力图,并将其存储在g变量中。cmap参数指定了颜色映射。 9. `corr_matrix = data_train1.corr().abs()`:这行代码计算训练数据集中每个特征之间的相关系数矩阵的绝对值,并将其存储在corr_matrix变量中。 10. `drop_col=corr_matrix[corr_matrix["target"]<threshold].index`:这行代码找到与目标变量相关性小于阈值的特征,并将这些特征的列名存储在drop_col变量中。 11. `train_x = train_data.drop(['target'], axis=1)`:这行代码将训练数据集中的目标变量('target')删除,得到只包含特征的训练数据集train_x。 12. `data_all = pd.concat([train_x,test_data])`:这行代码将训练数据集train_x和测试数据集test_data竖直合并,得到包含所有数据的数据集data_all。 13. `data_all.drop(drop_columns,axis=1,inplace=True)`:这行代码删除与目标变量相关性小于阈值的特征,并将修改后的data_all数据集存储在原位置。 14. `cols_numeric=list(data_all.columns)`:这行代码获取数据集data_all中所有特征的列名,并将其存储在cols_numeric列表中。 15. `def scale_minmax(col): return (col-col.min())/(col.max()-col.min())`:这行代码定义一个名为scale_minmax的函数,用于将数据集data_all中的每个特征进行最小-最大缩放。 16. `data_all[cols_numeric] = data_all[cols_numeric].apply(scale_minmax,axis=0)`:这行代码使用apply函数将scale_minmax函数应用于数据集data_all中的每个特征,并将修改后的数据存储在原位置。 17. `data_all[cols_numeric].describe()`:这行代码计算缩放后的数据集data_all中每个特征的描述性统计,并将其返回。

train_features = train_data.drop('Class', axis=1) train_labels = train_data['Class'] test_features = test_data.drop('Class', axis=1) test_labels = test_data['Class']然后就是这一部分 我现在的代码是否已经在特征值中去掉了Class列,在输出值中只有Class列呢

是的,你的理解是正确的。 这段代码中,我们首先将训练数据和测试数据分别拆分成特征和标签。在这里,“Class”列是标签,因此我们将其从特征中删除(`train_data.drop('Class', axis=1)`和`test_data.drop('Class', axis=1)`)。这样做是为了确保我们的模型不会在训练和测试中使用标签,以免出现过拟合的情况。 然后,我们将“Class”列作为标签(`train_data['Class']`和`test_data['Class']`)保存在`train_labels`和`test_labels`变量中,以便在训练和测试模型时使用。在这里,“Class”列是我们想要预测的目标列,也就是我们的模型要学习的东西。

相关推荐

import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix, classification_report, accuracy_score # 1. 数据准备 train_data = pd.read_csv('train.csv') test_data = pd.read_csv('test_noLabel.csv') # 填充缺失值 train_data.fillna(train_data.mean(), inplace=True) test_data.fillna(test_data.mean(), inplace=True) # 2. 特征工程 X_train = train_data.drop(['Label', 'ID'], axis=1) y_train = train_data['Label'] X_test = test_data.drop('ID', axis=1) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # 3. 模型建立 model = RandomForestClassifier(n_estimators=100, random_state=42) # 4. 模型训练 model.fit(X_train, y_train) # 5. 进行预测 y_pred = model.predict(X_test) # 6. 保存预测结果 df_result = pd.DataFrame({'ID': test_data['ID'], 'Label': y_pred}) df_result.to_csv('forecast_result.csv', index=False) # 7. 模型评估 y_train_pred = model.predict(X_train) print('训练集准确率:', accuracy_score(y_train, y_train_pred)) print('测试集准确率:', accuracy_score(y_test, y_pred)) print(classification_report(y_test, y_pred)) # 8. 绘制柱形图 feature_importances = pd.Series(model.feature_importances_, index=X_train.columns) feature_importances = feature_importances.sort_values(ascending=False) plt.figure(figsize=(10, 6)) sns.barplot(x=feature_importances, y=feature_importances.index) plt.xlabel('Feature Importance Score') plt.ylabel('Features') plt.title('Visualizing Important Features') plt.show() # 9. 对比类分析 train_data['Label'].value_counts().plot(kind='bar', color=['blue', 'red']) plt.title('Class Distribution') plt.xlabel('Class') plt.ylabel('Frequency') plt.show()

最新推荐

recommend-type

服务器虚拟化部署方案.doc

服务器、电脑、
recommend-type

北京市东城区人民法院服务器项目.doc

服务器、电脑、
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【基础】网络编程入门:使用HTTP协议

![【基础】网络编程入门:使用HTTP协议](https://img-blog.csdnimg.cn/direct/4fbc6b5a6d744a519429654f56ea988e.png) # 1. 网络编程基础** **1.1 网络基础知识** 网络是连接计算机和设备的系统,允许它们交换数据和资源。它由节点(计算机、服务器、路由器等)和连接它们的数据链路组成。网络可以是局域网(LAN)、广域网(WAN)或互联网。 **1.2 TCP/IP协议栈** TCP/IP协议栈是一组通信协议,用于在网络上传输数据。它分为四层: * **链路层:**处理物理连接和数据传输。 * **网络层:
recommend-type

matlab画矢量分布图

在MATLAB中,绘制矢量分布图通常用于可视化二维或三维空间中的向量场,这有助于理解力场、风速、磁场等现象的分布情况。以下是使用MATLAB创建矢量分布图的基本步骤: 1. 准备数据:首先,你需要有一个表示向量场的矩阵,其中每个元素代表一个点的x、y坐标及其对应的矢量分量。 2. 使用`quiver`函数:MATLAB提供了一个内置函数`quiver(x, y, U, V)`,其中`x`和`y`是网格的行和列坐标,`U`和`V`是对应于每个网格点的x和y分量的向量值。 ```matlab [X, Y] = meshgrid(x, y); % 创建网格 quiver(X,