(1)构建一个简单的线性模型:W,b为参数,W=2,b=1,运用tf.random.normal() 产生1000个随机数,产生x,y数据。 (2)用matplotlib库,用蓝色绘制训练数据。

时间: 2024-05-01 19:17:36 浏览: 38
ZIP

线性模型,用matlab实现,代码简单易读,训练结果直观,亦可用于多变量线性回归

好的,我了解了你的要求,接下来我会为你解答第一个问题: ```python import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # 构建线性模型 W = 2.0 b = 1.0 # 产生1000个随机数 x = tf.random.normal(shape=(1000,)) y = W * x + b + tf.random.normal(shape=(1000,), stddev=0.2) # 绘制训练数据 plt.scatter(x, y, c='b') plt.show() ``` 运行上述代码,即可得到用蓝色绘制的训练数据。
阅读全文

相关推荐

dataset = pd.read_csv('cifar_train.csv') #dataset = pd.read_csv('heart.csv') #dataset = pd.read_csv('iris.csuv') #sns.pairplot(dataset.iloc[:, 1:6]) #plt.show() #print(dataset.head()) #shuffled_data = dataset.sample(frac=1) #dataset=shuffled_data #index=[0,1,2,3,4,5,6,7,8,9,10,11,12,13] #dataset.columns=index dataset2=pd.read_csv('test.csv') #X = dataset.iloc[:, :30].values #y = dataset.iloc[:,30].values mm = MinMaxScaler() from sklearn.model_selection import train_test_split #X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0) X_train =dataset.iloc[:,1:].values X_test = dataset2.iloc[:,1:].values y_train = dataset.iloc[:,0].values y_test = dataset2.iloc[:,0].values print(y_train) # 进行独热编码 def one_hot_encode_object_array(arr): # 去重获取全部的类别 uniques, ids = np.unique(arr, return_inverse=True) # 返回热编码的结果 return tf.keras.utils.to_categorical(ids, len(uniques)) #train_y_ohe=y_train #test_y_ohe=y_test # 训练集热编码 train_y_ohe = one_hot_encode_object_array(y_train) # 测试集热编码 test_y_ohe = one_hot_encode_object_array(y_test) # 利用sequential方式构建模型 from keras import backend as K def swish(x, beta=1.0): return x * K.sigmoid(beta * x) from keras import regularizers model = tf.keras.models.Sequential([ # 隐藏层1,激活函数是relu,输入大小有input_shape指定 tf.keras.layers.InputLayer(input_shape=(3072,)), # lambda(hanshu, output_shape=None, mask=None, arguments=None), #tf.keras.layers.Lambda(hanshu, output_shape=None, mask=None, arguments=None), tf.keras.layers.Dense(500, activation="relu"), # 隐藏层2,激活函数是relu tf.keras.layers.Dense(500, activation="relu"), # 输出层 tf.keras.layers.Dense(10, activation="softmax") ])

import tensorflow as tf import pickle import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt # 从Excel文件中读取数据 data = pd.read_excel('D:\python-learn\data.xlsx', engine='openpyxl') input_data = data.iloc[:, :12].values #获取Excel文件中第1列到第12列的数据 output_data = data.iloc[:, 12:].values #获取Excel文件中第13列到最后一列的数据 # 数据归一化处理 scaler_input = MinMaxScaler() scaler_output = MinMaxScaler() input_data = scaler_input.fit_transform(input_data) output_data = scaler_output.fit_transform(output_data) # 划分训练集和验证集 X_train, X_val, y_train, y_val = train_test_split(input_data, output_data, test_size=0.1, random_state=42) # 定义神经网络模型 model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(12,)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(8, activation='linear') ]) # 编译模型 model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mse') # 定义学习率衰减 def scheduler(epoch, lr): if epoch % 50 == 0 and epoch != 0: return lr * 0.1 else: return lr callback = tf.keras.callbacks.LearningRateScheduler(scheduler) # 训练模型 history = model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=200, batch_size=50, callbacks=[callback])文件中的数据是怎么样进行训练的

请问这段代码如何给目标函数加入约束:8-x[0]-2*x[1]>=0:import numpy as np import tensorflow as tf from tensorflow.keras import layers import matplotlib.pyplot as plt # 定义目标函数 def objective_function(x): return x[0]-x[1]-x[2]-x[0]*x[2]+x[0]*x[3]+x[1]*x[2]-x[1]*x[3] # 生成训练数据 num_samples = 1000 X_train = np.random.random((num_samples, 4)) y_train = np.array([objective_function(x) for x in X_train]) # 划分训练集和验证集 split_ratio = 0.8 split_index = int(num_samples * split_ratio) X_val = X_train[split_index:] y_val = y_train[split_index:] X_train = X_train[:split_index] y_train = y_train[:split_index] # 构建神经网络模型 model = tf.keras.Sequential([ layers.Dense(32, activation='relu', input_shape=(4,)), layers.Dense(32, activation='relu'), layers.Dense(1) ]) # 编译模型 model.compile(tf.keras.optimizers.Adam(), loss='mean_squared_error') # 设置保存模型的路径 model_path = "model.h5" # 训练模型 history = model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=100, batch_size=32) # 保存模型 model.save(model_path) print("模型已保存") # 加载模型 loaded_model = tf.keras.models.load_model(model_path) print("模型已加载") # 使用模型预测最小值 a =np.random.uniform(0,5,size=4) X_test=np.array([a]) y_pred = loaded_model.predict(X_test) print("随机取样点",X_test) print("最小值:", y_pred[0]) # 可视化训练过程 plt.plot(history.history['loss'], label='train_loss') plt.plot(history.history['val_loss'], label='val_loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.show()

import numpy as np import pandas as pd import tensorflow as tf from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout, Activation from sklearn.metrics import auc, accuracy_score, f1_score, recall_score # 读入数据 data = pd.read_csv('company_data.csv') X = data.iloc[:, :-1].values y = data.iloc[:, -1].values # 利用LabelEncoder将标签进行编码 encoder = LabelEncoder() y = encoder.fit_transform(y) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 对特征进行PCA降维 pca = PCA(n_components=17) X_train = pca.fit_transform(X_train) X_test = pca.transform(X_test) # 对数据reshape为符合卷积层输入的格式 X_train = X_train.reshape(-1, 17, 1) X_test = X_test.reshape(-1, 17, 1) # 构建卷积神经网络模型 model = Sequential() model.add(Conv1D(filters=128, kernel_size=3, activation='relu', input_shape=(17, 1))) model.add(Conv1D(filters=128, kernel_size=4, activation='relu')) model.add(Conv1D(filters=128, kernel_size=5, activation='relu')) model.add(MaxPooling1D(pool_size=2)) model.add(Flatten()) model.add(Dense(units=64, activation='relu')) model.add(Dense(units=1, activation='sigmoid')) # 编译模型 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_test, y_test), verbose=1) # 在测试集上评估模型 y_pred = model.predict(X_test) y_pred = np.round(y_pred).flatten() # 计算各项指标 auc_score = auc(y_test, y_pred) accuracy = accuracy_score(y_test, y_pred) f1score = f1_score(y_test, y_pred) recall = recall_score(y_test, y_pred) # 打印输出各项指标 print("AUC score:", auc_score) print("Accuracy:", accuracy) print("F1 score:", f1score) print("Recall:", recall) 这个代码有什么错误

def train_gan(generator, discriminator, gan, dataset, latent_dim, epochs): notes = get_notes() # 得到所有不重复的音调数目 num_pitch = len(set(notes)) network_input, network_output = prepare_sequences(notes, num_pitch) model = build_gan(network_input, num_pitch) # 输入,音符的数量,训练后的参数文件(训练的时候不用写) filepath = "03weights-{epoch:02d}-{loss:.4f}.hdf5" checkpoint = tf.keras.callbacks.ModelCheckpoint( filepath, # 保存参数文件的路径 monitor='loss', # 衡量的标准 verbose=0, # 不用冗余模式 save_best_only=True, # 最近出现的用monitor衡量的最好的参数不会被覆盖 mode='min' # 关注的是loss的最小值 ) for epoch in range(epochs): for real_images in dataset: # 训练判别器 noise = tf.random.normal((real_images.shape[0], latent_dim)) fake_images = generator(noise) with tf.GradientTape() as tape: real_pred = discriminator(real_images) fake_pred = discriminator(fake_images) real_loss = loss_fn(tf.ones_like(real_pred), real_pred) fake_loss = loss_fn(tf.zeros_like(fake_pred), fake_pred) discriminator_loss = real_loss + fake_loss gradients = tape.gradient(discriminator_loss, discriminator.trainable_weights) discriminator_optimizer.apply_gradients(zip(gradients, discriminator.trainable_weights)) # 训练生成器 noise = tf.random.normal((real_images.shape[0], latent_dim)) with tf.GradientTape() as tape: fake_images = generator(noise) fake_pred = discriminator(fake_images) generator_loss = loss_fn(tf.ones_like(fake_pred), fake_pred) gradients = tape.gradient(generator_loss, generator.trainable_weights) generator_optimizer.apply_gradients(zip(gradients, generator.trainable_weights)) gan.fit(network_input, np.ones((network_input.shape[0], 1)), epochs=100, batch_size=64) # 每 10 个 epoch 打印一次损失函数值 if (epoch + 1) % 10 == 0: print("Epoch:", epoch + 1, "Generator Loss:", generator_loss.numpy(), "Discriminator Loss:", discriminator_loss.numpy())

最新推荐

recommend-type

python用TensorFlow做图像识别的实现

1. 参数初始化:首先,我们需要初始化模型的参数,包括权重参数w和偏置参数b。这些参数将在训练过程中不断调整以优化模型性能。 2. 导入训练数据:从如MNIST这样的数据集中获取图像数据,该数据集包含大量手写数字的...
recommend-type

Python基于yolo的健身姿势检测与姿态矫正建议系统源代码+使用说明

Python基于yolo的健身姿势检测与姿态矫正建议系统源代码+使用说明 model:保存模型参数 config.yaml:配置文件 resource:输入文件夹,具有固定的目录结构(动作-视角-标准/错误点) output:输出文件夹,保持和resource相同的目录结构 main.py:实现resource2output方法,将resource中的资源全部提取数据并输出(csv格式)到output的相应位置 tasks:任务文件夹,对于不同的健身任务,分别实现标准性判别方法 keypoint.py:是对yolo模型返回的节点进行对象封装,其中的Keypoint对象封装了返回结果(是一个数组)中各关节位置对应数组中的位置,这样就不需要通过下标直接获取节点,而是通过例如get("l_elbow")的实例方法获取节点 pull_up.py:为具体健身任务实现标准性判别方法,这里是对引体向上的处理 task_processor.py由于main.py是在对resource文件夹中所有资源进行处理,不同的方法将对应不同的处理函数,task_processor.py中实现了TaskProces
recommend-type

使用谷歌地球引擎(GEE)和 Python 在孟加拉国西北部绘制基于机器学习算法的作物类型图.ipynb

精确的作物类型图对于监测种植模式、可持续利用现有自然资源和估算收成至关重要。人工数字化和标注--绘制作物类型图的常用方法--大多费时、费钱,甚至容易出现人为错误。近来,机器学习算法已发展成为利用卫星图像对作物品种进行分类的经济有效的替代方法。为应对最新进展,本研究将采用机器学习算法,利用哨兵-2 图像对孟加拉国西北部(拉杰沙希县戈达加里乡)的 6 种作物类型进行分类。将研究四种机器学习算法(随机森林、人工神经网络、KNN 和支持向量机),以准确绘制作物类型图。
recommend-type

Android圆角进度条控件的设计与应用

资源摘要信息:"Android-RoundCornerProgressBar" 在Android开发领域,一个美观且实用的进度条控件对于提升用户界面的友好性和交互体验至关重要。"Android-RoundCornerProgressBar"是一个特定类型的进度条控件,它不仅提供了进度指示的常规功能,还具备了圆角视觉效果,使其更加美观且适应现代UI设计趋势。此外,该控件还可以根据需求添加图标,进一步丰富进度条的表现形式。 从技术角度出发,实现圆角进度条涉及到Android自定义控件的开发。开发者需要熟悉Android的视图绘制机制,包括但不限于自定义View类、绘制方法(如`onDraw`)、以及属性动画(Property Animation)。实现圆角效果通常会用到`Canvas`类提供的画图方法,例如`drawRoundRect`函数,来绘制具有圆角的矩形。为了添加图标,还需考虑如何在进度条内部适当地放置和绘制图标资源。 在Android Studio这一集成开发环境(IDE)中,自定义View可以通过继承`View`类或者其子类(如`ProgressBar`)来完成。开发者可以定义自己的XML布局文件来描述自定义View的属性,比如圆角的大小、颜色、进度值等。此外,还需要在Java或Kotlin代码中处理用户交互,以及进度更新的逻辑。 在Android中创建圆角进度条的步骤通常如下: 1. 创建自定义View类:继承自`View`类或`ProgressBar`类,并重写`onDraw`方法来自定义绘制逻辑。 2. 定义XML属性:在资源文件夹中定义`attrs.xml`文件,声明自定义属性,如圆角半径、进度颜色等。 3. 绘制圆角矩形:在`onDraw`方法中使用`Canvas`的`drawRoundRect`方法绘制具有圆角的进度条背景。 4. 绘制进度:利用`Paint`类设置进度条颜色和样式,并通过`drawRect`方法绘制当前进度覆盖在圆角矩形上。 5. 添加图标:根据自定义属性中的图标位置属性,在合适的时机绘制图标。 6. 通过编程方式更新进度:在Activity或Fragment中,使用自定义View的方法来编程更新进度值。 7. 实现动画:如果需要,可以通过Android的动画框架实现进度变化的动画效果。 标签中的"Android开发"表明,这些知识点和技能主要面向的是Android平台的开发人员。对于想要在Android应用中实现自定义圆角进度条的开发者来说,他们需要具备一定的Android编程基础,并熟悉相关的开发工具和库。 在"RoundCornerProgressBar-master"压缩包文件的文件名称列表中,我们可以推测这个资源包含了完整的项目代码,包括源代码、资源文件、布局文件、可能的示例代码以及必要的文档说明。开发者通过下载和解压缩这个包,可以得到一个完整的项目,从而可以直接查看代码实现细节,或是将其集成到自己的项目中。 最终,对于希望使用"Android-RoundCornerProgressBar"的开发者,关键在于理解自定义View的创建过程、圆角图形的绘制技术,以及如何在Android应用中集成和使用这些自定义控件。通过上述知识点的学习和实践,开发者能够掌握在Android应用中创建美观且功能丰富的用户界面所需的技能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【R语言lattice包实战】:从案例到技巧,图形制作不再难

![R语言数据包使用详细教程lattice](http://pfister.ee.duke.edu/images/Nguyen-arxiv11-fig2.jpg) # 1. R语言与lattice包概述 R语言作为统计分析领域内广泛应用的编程语言,凭借其强大的图形功能而受到数据科学家的青睐。在R语言中,lattice包是绘图系统的重要组成部分,它基于trellis图形系统设计,能够高效地创建多变量条件图。本章节将引导读者对lattice包有一个初步的了解,并概述其功能和应用范围。 ## 1.1 R语言中的图形系统 R语言提供了一系列的图形系统,基础图形系统(base graphics)是其
recommend-type

输入正整数n.打出长度为n的菱形

好的,以下是打印菱形的代码实现: ``` #include <stdio.h> #include <stdlib.h> int main() { int n, i, j; printf("请输入一个正整数n:"); scanf("%d", &n); if(n % 2 == 0) { // 如果输入的n是偶数,将其加1变成奇数 n++; } for(i = 0; i < n / 2 + 1; i++) { for(j = 0; j < n / 2 - i; j++) { printf(
recommend-type

mui框架实现带侧边栏的响应式布局

资源摘要信息:"mui实现简单布局.zip" mui是一个基于HTML5的前端框架,它采用了类似Bootstrap的语义化标签,但是专门为移动设备优化。该框架允许开发者使用Web技术快速构建高性能、可定制、跨平台的移动应用。此zip文件可能包含了一个用mui框架实现的简单布局示例,该布局具有侧边栏,能够实现首页内容的切换。 知识点一:mui框架基础 mui框架是一个轻量级的前端库,它提供了一套响应式布局的组件和丰富的API,便于开发者快速上手开发移动应用。mui遵循Web标准,使用HTML、CSS和JavaScript构建应用,它提供了一个类似于jQuery的轻量级库,方便DOM操作和事件处理。mui的核心在于其强大的样式表,通过CSS可以实现各种界面效果。 知识点二:mui的响应式布局 mui框架支持响应式布局,开发者可以通过其提供的标签和类来实现不同屏幕尺寸下的自适应效果。mui框架中的标签通常以“mui-”作为前缀,如mui-container用于创建一个宽度自适应的容器。mui中的布局类,比如mui-row和mui-col,用于创建灵活的栅格系统,方便开发者构建列布局。 知识点三:侧边栏实现 在mui框架中实现侧边栏可以通过多种方式,比如使用mui sidebar组件或者通过布局类来控制侧边栏的位置和宽度。通常,侧边栏会使用mui的绝对定位或者float浮动布局,与主内容区分开来,并通过JavaScript来控制其显示和隐藏。 知识点四:首页内容切换功能 实现首页可切换的功能,通常需要结合mui的JavaScript库来控制DOM元素的显示和隐藏。这可以通过mui提供的事件监听和动画效果来完成。开发者可能会使用mui的开关按钮或者tab标签等组件来实现这一功能。 知识点五:mui的文件结构 该压缩包文件包含的目录结构说明了mui项目的基本结构。其中,"index.html"文件是项目的入口文件,它将展示整个应用的界面。"manifest.json"文件是应用的清单文件,它在Web应用中起到了至关重要的作用,定义了应用的名称、版本、图标和其它配置信息。"css"文件夹包含所有样式表文件,"unpackage"文件夹可能包含了构建应用后的文件,"fonts"文件夹存放字体文件,"js"文件夹则是包含JavaScript代码的地方。 知识点六:mui的打包和分发 mui框架支持项目的打包和分发,开发者可以使用其提供的命令行工具来打包项目,生成可以部署到服务器的静态资源。这一步通常涉及到资源的压缩、合并和优化。打包后,开发者可以将项目作为一个Web应用分发,也可以将其打包为原生应用,比如通过Cordova、PhoneGap等工具打包成可在iOS或Android设备上安装的应用。 知识点七:mui的兼容性和性能优化 mui框架对老旧设备也做了兼容性考虑,保证应用在低端设备上也有较好的性能表现。性能优化方面,mui提供了多种工具和最佳实践,例如使用懒加载、避免全局变量污染、减少DOM操作等策略来提高应用的运行速度和用户体验。 以上内容是根据标题、描述以及文件名称列表推测出的关于mui实现简单布局的知识点。开发者可以通过分析和实践上述知识点来更好地理解和运用mui框架,从而构建出高效且用户友好的移动应用界面。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【交互式图形】:Shiny应用中lattice包的巧妙应用指南

![R语言数据包使用详细教程lattice](https://blog.morrisopazo.com/wp-content/uploads/Ebook-Tecnicas-de-reduccion-de-dimensionalidad-Morris-Opazo_.jpg) # 1. Shiny与lattice包基础介绍 在数据科学与统计分析的世界中,可视化是一个至关重要的环节,它能够帮助我们直观地理解数据、展示研究成果并有效地传达信息。R语言作为数据分析领域的一个重要工具,其强大的图形能力得到了广泛的认可。在R语言家族中,`lattice`包和`Shiny`应用框架尤其受到关注。本章我们将简